

Uma abordagem computacional de porohiperelasticidade aplicada à análise de tecidos biológicos

Bruno Klahr¹, Thayller W. Barp¹, Thiago A. Carniel², Eduardo A. Fancello¹

¹Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina Florianópolis, 88040-900, Santa Catarina, Brasil bruno.klahr@posgrad.ufsc.br, thayller.barp@posgrad.ufsc.br, eduardo.fancello@ufsc.br ²Área de ciências exatas e ambientais, Universidade Comunitária da Região de Chapecó Chapecó, 89809-900, Santa Catarina, Brasil thiago.carniel@unochapeco.edu.br

Resumo. O presente trabalho aborda a formulação de um modelo bifásico submetido a deformações finitas. Neste caso, o meio poroso é considerado homogeneizado, no qual as fases materiais são assumidas como um único meio contínuo, não havendo distinção entre as fases fluida e sólida. A solução das equações de governo é realizada através do método de elementos finitos empregando um procedimento escalonado para os campos de deslocamentos e pressões. Além disso, emprega-se um método de integração temporal implícito de primeira ordem. Visando demonstrar a eficácia da abordagem proposta, um estudo de caso de compressão confinada foi realizado e comparado com resultados obtidos de um *software* comercial de elementos finitos. Em vista disso, os resultados obtidos demonstram que a abordagem computacional proposta consiste em uma ferramenta promissora para a investigação do comportamento mecânico de tecidos biológicos moles.

Palavras Chave: Poroelasticidade, Modelos Bifásicos, Deformações finitas, Tecidos biológicos

1 Introdução

Visando o aperfeiçoamento de técnicas cirúrgicas, o desenvolvimento da engenharia de tecidos e até mesmo para um melhor entendimento de micromecanismos presentes nos tecidos biológicos moles, diversos modelos matemáticos vem sendo desenvolvidos a fim de representar o comportamento mecânico desses materiais. A utilização de diferentes ferramentas computacionais permite a investigação e a modelagem de diversas características mecânicas observadas experimentalmente permitindo, assim, um melhor entendimento da mecânica desses tecidos.

Neste contexto, a representação do comportamento mecânico de tecidos biológicos moles comumente emprega modelos fenomenológicos que consideram apenas uma fase material. No entanto, sabe-se que tais tecidos são compostos principalmente por água. Sendo que em tecidos pouco vascularizados, o principal modo de transporte de nutrientes nestes tecidos consiste em difusão. Dessa forma, quando deseja-se investigar características do fluxo de fluido intersticial presente nestes tecidos, a utilização de modelos bifásicos torna-se uma ferramenta promissora. Teorias bifásicas, originalmente desenvolvidas para a mecânica dos solos (Biot [1]), têm sido amplamente utilizadas na modelagem matemática de tecidos biológicos hidratados. Nestas teorias, os modelos são montados considerando que os materiais são constituídos por duas fases materiais homogeneizadas, a matriz sólida porosa e o fluido intersticial.

No âmbito de poroelasticidade aplicada a tecidos moles, os estudos de Mow et al. [2], Armstrong et al. [3] e Spilker and Suh [4] utilizaram uma formulação bifásica elástica linear na representação do comportamento mecânico do tecido cartilaginoso articular. Por outro lado, considerando deformações finitas, Almeida and Spilker [5] apresentam uma formulação em elementos finitos via penalização para representar o comportamento mecânico de tecidos biológicos.

Embora muitos outros estudos sobre utilização e formulação de modelos bifásicos podem ser encontrados na literatura, percebe-se que estudos numéricos sobre o comportamento mecânico de tecidos biológicos ainda são escassos. Em vista disso, nota-se que muitas questões ainda não estão claras nesta área da biomecânica, tornando-a um campo aberto a pesquisas, sejam estas experimentais ou numéricas.

Motivado pelos fatos previamente expostos, o objetivo deste trabalho consiste em apresentar resultados preliminares relacionados a um projeto de pesquisa que visa investigar o comportamento mecânico de tecidos biológicos hidratados submetidos a deformações finitas utilizando teorias bifásicas. Desta forma, este trabalho apresenta a formulação em elementos finitos de um modelo bifásico em deformações finitas, o qual emprega um procedimento estagiado iterativo para sua solução. Com o objetivo de verificação da implementação computacional, um exemplo numérico com base em um estudo de caso de compressão confinada foi proposto e os resultados encontrados são comparados com os obtidos através de um *software* comercial de elementos finitos.

2 Fundamentação teórica em poroelasticidade

Um meio poroso pode ser definido por duas ou mais fases materiais. Em específico, quando utilizado modelos bifásicos na representação do meio poroso, considera-se apenas a fase fluida que escoa nos poros de uma estrutura sólida. Neste trabalho, o meio poroso é considerado um meio homogeneizado, no qual as fases materiais são assumidas como um único meio contínuo e não há a distinção entre as fases fluida e sólida. Fundamentos básicos da teoria de modelos bifásicos apresentados neste trabalho são baseados nas seguintes referências: Levenston et al. [6], Armero [7], Coussy [8], Dormieux et al. [9], Cheng [10], Serpieri and Travascio [11], Hirabayashi and Iwamoto [12].

2.1 Cinemática em deformações finitas

A Figura 1 apresenta as configurações macroscópica referencial e espacial das fases sólida (respectivamente, $\Omega_{\mathbf{x}}^{s} \in \Omega_{\mathbf{x}}^{s}$) e fluida (respectivamente, $\Omega_{\mathbf{x}}^{f} \in \Omega_{\mathbf{x}}^{f}$), além de um Elemento de Volume Representativo (EVR) de um meio poroso. A teoria de modelos bifásicos apresentada neste trabalho considera o domínio macroscópico espacial da mistura $\Omega_{\mathbf{x}}$ compartilhado por ambas as fases. Em outras palavras, as duas fases materiais da mistura, a fase sólida $\Omega_{\mathbf{x}}^{s}$ e a fase fluida $\Omega_{\mathbf{x}}^{f}$, situam-se no mesmo espaço físico na configuração espacial. Dessa forma, a mistura $\Omega_{\mathbf{x}}$ pode ser analisada como um meio homogeneizado entre as duas fases materiais consideradas. Por outro lado, as configurações de referência da fase sólida $\Omega_{\mathbf{x}}^{s}$ e da fase fluida $\Omega_{\mathbf{x}}^{f}$ podem não ser coincidentes. Neste caso, admite-se que o EVR é suficientemente grande comparado com o tamanho dos poros, permitindo o tratamento homogêneo do meio, e ao mesmo tempo, é pequeno suficiente comparado à escala dos fenômenos macroscópicos, a fim de considerá-lo infinitesimal no tratamento matemático. Baseado nessas hipóteses, a posição espacial \mathbf{x} da mistura é expressa por

$$\boldsymbol{x} = \mathbf{X}^{\mathrm{s}} + \mathbf{u}^{\mathrm{s}} = \mathbf{X}^{\mathrm{t}} + \mathbf{u}^{\mathrm{t}},\tag{1}$$

onde os vetores X^s e X^f são as posições referenciais das fases sólida e fluida, respectivamente, e os vetores u^s e u^f representam os deslocamentos de cada fase material.

Figura 1. Configurações macroscópicas referencial e espacial das fases sólida e fluida. Representação esquemática da microestrutura de um material bifásico e seu Elemento de Volume Representativo (EVR).

Em consequência da Eq. (1), os gradientes de deformação $\mathbf{F}^{s} \in \mathbf{F}^{f}$ das fases sólida e fluida, e seus respectivos jacobianos volumétricos $J^{s} \in J^{f}$, podem ser definidos por,

$$\mathbf{F}^{\mathrm{s}} \stackrel{\mathrm{def}}{=} \frac{\partial \boldsymbol{x}}{\partial \mathbf{X}^{\mathrm{s}}}, \qquad \mathbf{F}^{\mathrm{f}} \stackrel{\mathrm{def}}{=} \frac{\partial \boldsymbol{x}}{\partial \mathbf{X}^{\mathrm{f}}}, \qquad J^{\mathrm{s}} \stackrel{\mathrm{def}}{=} \det\left(\mathbf{F}^{\mathrm{s}}\right), \qquad J^{\mathrm{f}} \stackrel{\mathrm{def}}{=} \det\left(\mathbf{F}^{\mathrm{f}}\right). \tag{2}$$

Embora muitas teorias clássicas de poroelasticidade sejam relacionadas a abordagens fenomenológicas, algumas informações e hipóteses dos constituintes microestruturais que compõem a mistura homogeneizada são geralmente realizadas durante o equacionamento do problema (Dormieux et al. [9]). Em vista disso, os conceitos de densidade intrínseca e aparente de cada fase material e a definição de fração volumétrica de cada constituinte são apresentados.

Considera-se o elemento de volume representativo (EVR) da mistura apresentado na Fig. 1, o qual é composto por dois microconstituintes distintos: a fase sólida Ω^{s}_{μ} e a fase fluida Ω^{f}_{μ} , onde a notação $(\cdot)_{\mu}$ refere-se às quantidades microscópicas. Nessa escala, a densidade da fase sólida ρ^{s}_{μ} e da fase fluida ρ^{f}_{μ} podem ser definidas por,

$$\rho_{\mu}^{s} \stackrel{\text{def}}{=} \frac{\mathrm{d}m^{s}}{\mathrm{d}v_{\mu}^{s}}, \qquad \rho_{\mu}^{f} \stackrel{\text{def}}{=} \frac{\mathrm{d}m^{f}}{\mathrm{d}v_{\mu}^{f}}, \tag{3}$$

onde dm^s e dm^f representam os elementos de massa do sólido e do fluido, respectivamente, e as quantidades dv^s_{μ} e dv^f_{μ} são seus respectivos elementos de volume microscópicos. As quantidades ρ^s_{μ} e ρ^f_{μ} são definidas na configuração espacial do EVR e são comumente conhecidas como densidades intrínsecas ou reais de cada micro-constituinte.

Por outro lado, considerando as configurações macroscópicas $\Omega_x^s \in \Omega_x^f$, pode-se definir as densidades

$$\rho_x^{\rm s} \stackrel{\rm def}{=} \frac{\mathrm{d}m^{\rm s}}{\mathrm{d}v}, \qquad \rho_x^{\rm f} \stackrel{\rm def}{=} \frac{\mathrm{d}m^{\rm t}}{\mathrm{d}v}, \tag{4}$$

ambas ocupando o mesmo elemento de volume da mistura, ou seja $dv = dv^s = dv^f$, sendo que $dv = dv^s_{\mu} + dv^f_{\mu}$. Neste caso, em contraste com as densidades intrínsecas de cada fase material, $\rho^s_x = \rho^f_x$ representam quantidades macroscópicas e são denominadas de densidades aparentes.

Outras variáveis relevantes no presente modelo são as frações volumétricas do sólido (ou solidez) ν_x^s , e a fração volumétricas do fluido (ou porosidade) ν_x^f , definidas como os coeficientes que relacionam o diferencial de volume macroscópico dv com os respectivos diferenciais de volume reais do sólido e do fluido, isto é,

$$\mathrm{d}v^{\mathrm{s}}_{\mu} = \nu^{\mathrm{s}}_{x}\mathrm{d}v, \qquad \mathrm{d}v^{\mathrm{f}}_{\mu} = \nu^{\mathrm{f}}_{x}\mathrm{d}v. \tag{5}$$

2.2 Hipóteses do modelo

Na formulação de modelos matemáticos que visam descrever fenômenos físicos ou biológicos observados experimentalmente, é comum admitir diversas hipóteses a fim de simplificar a modelagem. Para o modelo bifásico empregado neste trabalho, admite-se o seguinte conjunto de hipóteses (Armero [7]):

- 1. Incompressibilidade dos microconstituintes: Esta condição exige que a taxa temporal das densidades intrínsecas seja nula, isto é: $\dot{\rho}_{\mu}^{s} = 0$ e $\dot{\rho}_{\mu}^{f} = 0$.
- 2. Mistura completamente saturada: Devido a essa condição, tem-se que as frações volumétricas (Eq. (5)) devem satisfazer a seguinte restrição para qualquer nível de deformação: $\nu_x^s + \nu_x^f = 1$.
- 3. Decomposição aditiva da tensão total: A tensão de Cauchy macroscópica total da mistura σ que equilibra as forças externas é obtida a partir da soma entre a contribuição de tensão do sólido $\sigma^{s} \in \Omega_{x}^{s}$, que depende apenas das deformações do meio sólido, e a contribuição advinda da pressão no fluido $\sigma^{f} \in \Omega_{x}^{f}$: $\sigma = \sigma^{s} + \sigma^{f}$.
- Contribuição da tensão advinda da fase fluida é hidrostática: A contribuição de tensão no fluido depende unicamente da pressão macroscópica do fluido p^f, i. e.: σ^f = -p^fI.

2.3 Equações de governo

Admitindo as hipóteses sobre o modelo listadas na seção anterior e desconsiderando efeitos inerciais e forças de corpo, o problema de valor de contorno para o modelo bifásico é dado por (Levenston et al. [6], Armero [7], Hirabayashi and Iwamoto [12]),

$$\begin{cases} \operatorname{div}_{x} (\boldsymbol{\sigma}) = \mathbf{0}; & \boldsymbol{\sigma} = \boldsymbol{\sigma}^{s} - p^{\mathrm{f}} \mathbf{I} \\ \operatorname{div}_{x} (\mathbf{v}^{\mathrm{s}} + \mathbf{w}) = 0; & \mathbf{w} = \nu_{x}^{\mathrm{f}} (\mathbf{v}^{\mathrm{f}} - \mathbf{v}^{\mathrm{s}}) \\ \mathbf{u} = \bar{\mathbf{u}} & \operatorname{em} \Gamma_{u}^{\mathrm{s}} \\ \mathbf{t}_{x} = \boldsymbol{\sigma} \mathbf{n}_{x} = \bar{\mathbf{t}}_{x} & \operatorname{em} \Gamma_{u}^{\mathrm{s}} \\ p^{\mathrm{f}} = \bar{p}^{\mathrm{f}} & \operatorname{em} \Gamma_{u}^{\mathrm{f}} \\ q^{\mathrm{f}} = \mathbf{w} \cdot \mathbf{n}_{x} = \bar{q}^{\mathrm{f}} & \operatorname{em} \Gamma_{q}^{\mathrm{f}} \end{cases}$$
(6)

CILAMCE 2020

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC. Foz do Iguaçu/PR, Brazil, November 16-19, 2020 A equação de equilíbrio do sistema sólido-fluido é estabelecida pela clássica equação de conservação de momento linear (6-1) em conjunto com a equação clássica de conservação de momento angular, que tem por consequência a simetria do tensor de tensões de Cauchy, *i.e.*, $\boldsymbol{\sigma} = \boldsymbol{\sigma}^{T}$. A Equação (6-2) é consequência direta da conservação de massa para o meio sólido e fluido ($\dot{m}^{s} = 0 \text{ e } \dot{m}^{f} = 0$) considerando as hipóteses 1 e 2 descritas na Seção 2.2. Neste caso, os vetores $\mathbf{v}^{s} \mathbf{e} \mathbf{v}^{f}$ representam as velocidades dos meios sólido e fluido, respectivamente. O vetor \mathbf{w} representa uma velocidade relativa e efetiva entre os dois meios homogeneizada, devido à ponderação com a porosidade da mistura.

Além disso, neste trabalho emprega-se a clássica lei de Darcy $\mathbf{w} = -\mathbf{k}^{f} \nabla_{\boldsymbol{x}} p^{f}$, na qual o tensor de segunda ordem simétrico positivo semi-definido \mathbf{k}^{f} , denominado tensor de permeabilidade, estabelece uma relação linear entre a velocidade de fluxo relativa \mathbf{w} e o gradiente de pressão do fluido $\nabla_{\boldsymbol{x}} p^{f}$. Tal relação é amplamente utilizada na literatura de meios porosos (Levenston et al. [6], Coussy [8], Hirabayashi and Iwamoto [12]).

As condições de contorno do problema da fase sólida e da fase fluida são dadas, respectivamente, pelas eqs. (6-3-4) e (6-5-6). No contorno do meio sólido, consideram-se condições de contorno de deslocamento prescrito $\bar{\mathbf{u}}$ ou de tração prescrita $\bar{\mathbf{t}}_x$. No contorno do meio fluido, podem ser aplicadas condições de contorno de pressão prescrita \bar{p}^{f} ou de fluido normal à superfície prescrito \bar{q}^{f} . Além disso, admite-se que as superfícies de contorno do sólido e do fluido na configuração espacial são desacopladas em partes disjuntas, logo tem-se que

$$\begin{cases} \Gamma_{x}^{s} = \Gamma_{u}^{s} \cup \Gamma_{t}^{s} & \operatorname{com} \quad \Gamma_{u}^{s} \cap \Gamma_{t}^{s} = \emptyset \\ \Gamma_{x}^{f} = \Gamma_{p}^{f} \cup \Gamma_{q}^{f} & \operatorname{com} \quad \Gamma_{p}^{f} \cap \Gamma_{q}^{f} = \emptyset \end{cases}$$
(7)

onde o contorno espacial da fase sólida e fluida são iguais, *i.e.*, $\Gamma_{\boldsymbol{x}} = \Gamma_{\boldsymbol{x}}^{s} = \Gamma_{\boldsymbol{x}}^{f}$.

2.4 Abordagem de solução numérica

O problema não linear local (6) é resolvido utilizando o Método dos Elementos Finitos. Para tal fim, a forma integral (forma fraca) do problema é obtida através da técnica de resíduos ponderados sobre as equações diferenciais do problema (6), utilizando para isto uma formulação de dois campos, deslocamento de meio sólido u e pressão do meio fluido p. Este trabalho utiliza um elemento composto por funções de interpolação quadráticas para aproximação do campo de deslocamentos e lineares para aproximação do campo de pressões (Markert [13], Berger et al. [14]). Essa abordagem é comumente empregada na literatura de meios porosos com o objetivo de garantir convergência e evitar instabilidades numéricas (oscilações espúrias no campo de pressão).

O resultado do processo de discretização fornece um sistema de equações não lineares (resíduo) acoplando as variáveis de deslocamento e pressão. A solução destas equações via técnica de Newton define um sistema monolítico de equações lineares para cada iteração, que, dependendo do problema, pode sofrer com problemas de mau condicionamento. Uma alternativa a esta abordagem é dada pelo procedimento denominado escalonado, onde as variáveis de pressão e deslocamento são resolvidas separadamente num processo iterativo (Kim et al. [15]).

Em relação à aproximação do campo velocidades do sólido, utiliza-se um método de integração trapezoidal a partir da solução do campo de deslocamentos. Tal estratégia fornece uma aproximação implícita e de primeira ordem, comumente utilizada na solução de problema bifásicos (Hirabayashi and Iwamoto [12], Berger et al. [14]).

Considerando um processo iterativo, para cada incremento de tempo, resolve-se primeiramente a Eq. (6-1) considerando o campo de pressões fixo, obtendo assim a solução do campo de deslocamentos. Com isso, atualizase o campo de velocidades do sólido e resolve-se a Eq. (6-2) para obter o campo de pressões. Dessa forma, o campo de pressões pode ser atualizado na Eq. (6-1) e o procedimento é repetido até que um critério de convergência seja alcançado.

3 Resultados e discussões

A formulação bifásica apresentada na Seção 2 foi implementada em um código laboratorial de elementos finitos não linear. A fim de verificar a implementação do modelo, uma análise numérica tridimensional foi proposta e os resultados obtidos são comparados com os computados pelo *software* comercial de elementos finitos ABAQUS.

Um corpo de prova numérico submetido à compressão confinada foi proposto como caso de estudo. Neste caso, os parâmetros geométricos e materiais são baseados no trabalho de Spilker and Suh [4], o qual realizou investigações numéricas utilizando modelos bifásicos aplicados a tecidos cartilaginosos.

O corpo de prova proposto possui geometria cilíndrica com 6,35 milímetros de diâmetro e 1,78 milímetros de altura. As condições de contorno do modelo em análise são aplicadas a fim de obter um caso de compressão confinada. Neste caso, para o meio sólido são impostas restrições de deslocamento na direção Z na base do cilindro e nas direções X e Y nos contornos laterais do cilindro, a fim de impedir o deslocamento radial. O carregamento

consiste em um deslocamento prescrito na extremidade superior do cilindro com valor de $u_z = -0,089$ milímetros. No meio fluido, impõe-se fluxo nulo em todas as superfícies do corpo de prova, exceto na extremidade superior do cilindro, onde aplica-se uma condição de pressão nula, permitindo assim uma condição de fluxo de fluido não nulo por essa região.

A aplicação do deslocamento u_z é realizada em duas etapas. A primeira etapa, consiste na aplicação do deslocamento utilizando velocidade constante em 500 segundos. A segunda etapa, consiste em um ensaio de relaxação, no qual o deslocamento aplicado no sólido é mantido constante durante 1000 segundos.

Em relação à modelagem constitutiva do sólido, utilizou-se um modelo hiperelástico Neo-Hookean (Bonet and Wood [16]), onde a equação de energia de deformação é dada por,

$$\psi^s = 2G(\bar{I}_1 - 3) + \frac{K}{2}(J - 1)^2.$$
(8)

Para a fase fluida, considerou-se um fluxo isotrópico, com propriedades de permeabilidade independentes da cinemática da fase sólida. Dessa forma, o tensor de permeabilidade é $\mathbf{k}^{f} = \kappa \mathbf{I}$, onde κ é um parâmetro material do meio poroso. Considerando que o corpo de prova é composto por um tecido cartilaginoso, utilizou-se as propriedades G = 0,343 MPa, K = 0,243 MPa e $\kappa = 0,76 \times 10^{-2} \text{ mm}^4/\text{Pa.s}$ (Spilker and Suh [4]).

A Figura (2) apresenta os resultados do campo de pressão no instante de finalização de aplicação do deslocamento (instante de tempo de 500 segundos) obtidos via simulação utilizando a implementação numérica e o *software* ABAQUS. Em ambas as simulações, utilizou-se elementos tetraédricos, com formulação quadrática para o campo de deslocamento e aproximação linear para o campo de pressão. Para fins de comparação, utilizou-se a mesma discretização de malha, como pode ser observado na Fig. (2). Devido à característica de simetria radial do problema, simulou-se apenas um quarto da geometria.

Figura 2. Campos de pressão para o tempo de 500 segundos. (a) Campo obtido via simulação no ABAQUS (b) Campo obtido via formulação proposta.

Comparando os campos de pressão, verifica-se uma grande semelhança nos resultados. Verifica-se, também, que em ambos os casos há um maior gradiente de pressão próximo ao contorno onde há pressão nula, indicando maior fluxo de fluido.

A fim de verificar a sensibilidade do modelo à variação da discretização temporal, simulou-se o mesmo caso utilizando diferentes incrementos de tempo Δt . A Figura (3) apresenta as comparações entre os resultados obtidos via *software* comercial ABAQUS e a abordagem computacional proposta utilizando três diferentes incrementos de tempo.

Neste caso, nota-se que com a diminuição do incremento de tempo há uma suavização da solução, enfatizando a dependência da solução com o Δt numérico utilizado. Nota-se que, independente do incremento de tempo utilizado, são obtidos resultados idênticos em ambas as simulações realizadas.

Neste ponto, é importante enfatizar que o presente trabalho representa um estudo preliminar que visa a utilização de modelos bifásicos na investigação de tecidos biológicos moles hidratados. Em particular, tem-se como objetivo principal o emprego de técnicas de homogeneização, visando investigações futuras do comportamento microstrutural de tecidos biológicos considerando modelos porohiperelásticos em conjunto com teorias de multiescala.

4 Conclusões

Neste trabalho empregou-se uma abordagem de porohiperelasticidade com o objetivo de investigações numéricas de tecidos biológicos hidratados. A partir de análises comparativas entre a implementação realizada neste trabalho e resultados obtidos através do *software* comercial de elementos finitos ABAQUS, verificou-se grande

Figura 3. Comparação entre curvas de pressão ao longo do tempo para um ponto na base do cilindro (Z = 0) considerando diferentes incrementos de tempo.

semelhança entre os resultados avaliados, validando a abordagem computacional proposta neste trabalho. Este trabalho encontra-se em uma fase inicial, com os resultados mostrados até aqui apenas preliminares em relação ao entendimento e compreensão de modelos bifásicos aplicados à tecidos biológicos. É importante enfatizar que o principal objetivo desta pesquisa é o emprego da teoria bifásica em conjunto com técnicas de homogeneização a fim de investigar o comportamento biomecânico microestrutural de tecidos biológicos moles.

Agradecimentos. Os autores agradecem à "Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES" e ao "Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq" pelo apoio financeiro a esta pesquisa.

Responsabilidade pelas informações. Os autores são os únicos responsáveis pelas informações incluídas neste trabalho.

Referências

[1] Biot, M. A., 1941. General Theory of Three-Dimensional Consolidation. *Journal of Applied Physics*, vol. 12, n. 2, pp. 155–164.

[2] Mow, V. C., Kuei, S. C., Lai, W. M., & Armstrong, C. G., 1980. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. *Journal of Biomechanical Engineering*, vol. 102, n. 1, pp. 73–84.

[3] Armstrong, C. G., Lai, W. M., & Mow, V. C., 1984. An analysis of the unconfined compression of articular cartilage. *Journal of Biomechanical Engineering*, vol. 106, n. 2, pp. 165–173.

[4] Spilker, R. L. & Suh, J. K., 1990. Formulation and evaluation of a finite element model for the biphasic model of hydrated soft tissues. *Computers and Structures*, vol. 35, n. 4, pp. 425–439.

[5] Almeida, E. S. & Spilker, R. L., 1997. Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I - Alternate Formulations. *Computer Methods in Biomechanics and Biomedical Engineering*, vol. 1, n. 1, pp. 25–46.

[6] Levenston, M., Frank, E., & Grodzinsky, A., 1998. Variationally derived 3-field finite element formulations for quasistatic poroelastic analysis of hydrated biological tissues. *Computer Methods in Applied Mechanics and Engineering*, vol. 156, n. 1-4, pp. 231–246.

[7] Armero, F., 1999. Formulation and finite element implementation of a multiplicative model of coupled poroplasticity at finite strains under fully saturated conditions. *Computer Methods in Applied Mechanics and Engineering*, vol. 171, n. 3-4, pp. 205–241.

[8] Coussy, O., 2003. Poromechanics. John Wiley & Sons, Ltd, Chichester, UK.

[9] Dormieux, L., Kondo, D., & Ulm, F.-J., 2006. *Microporomechanics*. John Wiley & Sons, Ltd, Chichester, UK.
[10] Cheng, A. H.-D., 2016. *Poroelasticity*, volume 27 of *Theory and Applications of Transport in Porous Media*. Springer International Publishing, Cham.

CILAMCE 2020

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC. Foz do Iguaçu/PR, Brazil, November 16-19, 2020

[11] Serpieri, R. & Travascio, F., 2017. *Variational Continuum Multiphase Poroelasticity*, volume 67 of *Advanced Structured Materials*. Springer Singapore, Singapore.

[12] Hirabayashi, S. & Iwamoto, M., 2018. Finite element analysis of biological soft tissue surrounded by a deformable membrane that controls transmembrane flow. *Theoretical Biology and Medical Modelling*, vol. 15, n. 1, pp. 21.

[13] Markert, B., 2008. A biphasic continuum approach for viscoelastic high-porosity foams: Comprehensive theory, numerics, and application. *Archives of Computational Methods in Engineering*, vol. 15, n. 4, pp. 371–446.
[14] Berger, L., Bordas, R., Kay, D., & Tavener, S., 2017. A stabilized finite element method for finite-strain three-field poroelasticity. *Computational Mechanics*, vol. 60, n. 1, pp. 51–68.

[15] Kim, J., Tchelepi, H., & Juanes, R., 2011. Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits. *Computer Methods in Applied Mechanics and Engineering*, vol. 200, n. 23-24, pp. 2094–2116.

[16] Bonet, J. & Wood, R. D., 2008. *Nonlinear continuum mechanics for finite element analysis*. Cambridge University Press, 2nd ed. edition.