
Constitutive modeling of viscoelastic materials: A quantitative comparison
between classic and fractional models

M. E. W. Costa1, J.-M. C. Farias1, L. B. P. de Faria1, E. A. Fancello1

1Dept. of Mechanical Engineering, Federal University of Santa Catarina
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Abstract. Thermoplastic polymers are widely used in biomedical applications, such as knee and hip prosthetics.
The development of optimized orthopedic implants is strongly related to the performance of experimental tests and
computer simulations that approximate the behavior in situ of the material used. The literature indicates the possi-
bility of applying fractional viscoelastic constitutive models as an alternative to the classical integer order models.
However, it is not common to compare quantitatively the results obtained using both approaches. Therefore, the
predictive capabilities of some fractional and classical viscoelastic models with infinitesimal and finite kinematics
are compared in this work. The study is conducted using cyclical and creep-recovery experimental tests at two
strain and stress rates. First we present the individual fittings of the cyclical and creep-recovery experimental data.
Then, these tests are fitted simultaneously. The parameter fitting is made using a hybrid optimization procedure,
using a heuristic method for global search and another based on gradients for local search. In the context of the
experimental conditions evaluated, the results indicated that the use of the fractional models tested did not result in
a significant improvement when the assessment are made using individual experimental data. On the other hand,
for the the simultaneously parameter fitting, the fractional models showed a slight improvement. However, none
of the models used was able to represent satisfactorily the cyclic and creep-recovery data used, this fact may be
related to the presence of nonlinear phenomena not taken into account in the present work.
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1 Introduction

The classic constitutive modeling of viscoelastic materials is usually performed by means of phenomenolog-
ical models. In this approach, the representation of the material behavior is obtained by elements that separately
describe the elastic and the viscous behavior.

These elastic and viscous elements can be further combined in many different ways resulting in different
models. Some of them are the well known Kelvin and Maxwell models, or a combination of these, yielding, for
example, their generalized versions, as presented in Ward and Sweeney [1]. If one is to adopt the classical linear
viscoelasticity theory to derive the constitutive laws, linear differential equations are obtained with derivatives that
are known to have integer order. These classic viscoelastic approaches are also known to be sensitive to the entire
past strain history of the material. However, due to the mathematical properties of them, when dealing with the
incremental constitutive update algorithms, the dependence on the entire strain history may be reduced to account
for only the two most recent states. This allows for an efficient computational implementation.

This intrinsic association with the past strain history and with linear differential equations automatically
brought attention to the use of fractional derivatives. Interestingly, the concept of fractional derivatives embeds
the entire history of the variable being differentiated within its own definition. Thus, it seems appropriate that this
concept would naturally fit the modeling of viscoelastic materials as well, extending the order of the differential
operators to fractional ones.

In contrast to its integer version, the fractional derivative is not uniquely determined, in the sense that there
is a large number of definitions available in the literature. These alternative definitions may be specialized or
better suited for different areas of interest. Formulations in the sense of Caputo, Riemann-Liouville (R.L.), and
Grünwald-Letnikov (G.L.) are widely used.

Typically, two approaches are followed when dealing with fractional viscoelasticity. On the one hand, some
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authors analyze the fractional model entirely in the frequency domain. This approach is well suited when DMA
tests are available and the storage and loss moduli are sought. For example, Xu et al. [2], used fractional models
to analyze vibrations in beams in the frequency domain. Recently, Amabili et al. [3] compared the predictive
capability of integer and fractional models with finite kinematics in fitting human aortas, also in frequency domain.
On the other hand, fractional models can also be formulated in the time domain. This approach leads to differential
equations with differential operators that are fractional. As a consequence of that, the incremental constitutive
update algorithm must account for the entire past history of the variable being differentiated. This is the approach
followed herein.

Although other works make the comparison in the time domain, to our knowledge, this approach is still scarce
and the comparison is usually made using only one strain or stress rate per parameter fitting procedure, such as
Meng et al. [4]. One can also cite the work made by Xiao et al. [5], where the authors carry out comparison in
several load conditios, however, experimental results of real materials were not used. This work aims at contribut-
ing to this point. We investigate how fractional viscoelasticity aids at increasing the predictive capability when
assessing two creep-recovery and two cyclic experiments simultaneously, both in the time domain, for a polymer
widely used in biomedical applications. To avoid local minima, we adopted a hybrid procedure for fitting these
models. First, the Particle Swarm Optimization method (PSO) is used for a global prospection of the parameter
space, followed by a gradient-based method for a local parameter refinement.

2 Constitutive models

The models presented are formulated in terms of deviatoric and volumetric parts associated with each vis-
coelastic branch. This approach follows that presented by Adolfsson and Enelund [6] in his fractional model with
finite kinematics. The volumetric part is assumed to be purely elastic. Therefore, the evolution of internal variables
is given only by the deviatoric part (Adolfsson and Enelund [6], Khajehsaeid [7], Simo and Hughes [8]).

We should make an important observation about the Poisson’s ratio. This ratio in viscoelastic materials can
be a function of time (or frequency), as presented by Tschoegl et al. [9] for classic viscoelasticity. However, to
consider this phenomenon, the strain in transverse direction should also be measured, or performed tests in pure
hydrostatic and deviatoric conditions. Since no transverse strain data is available, we use the initial Poisson elastic
ratio. Therefore, the bulk parameter, K∞, is obtained from eq. (1), where G∞ and Gi are deviatoric parameters.
In addition, a Poisson’s ratio, ν0 = 0.46, was considered.

K∞ =
2(1 + ν0)G0

3(1− 2ν0)
, (1)

G0 = G∞ +

k∑
i=1

Gi. (2)

In the previous equations, “k” represents the number of Maxwell devices in parallel. The total stress, σ(t),
can be obtained by the difference between the elastic and viscoelastic stress, according to the eq. (3). Where ε,
e, Ψ and Qi, correspond, respectively, to the infinitesimal strain tensor and its deviatoric part, the Helmholtz free
energy function and the internal variable tensor of each viscoelastic branch. The evolution of the internal variables
Qi is given by the integer order differential equation presented in the eq. (4), where τi is the viscoelastic relaxation
time of each Maxwell’s device. The dev term designates the spatial deviatoric operator.

σ(t) =
∂Ψ∞(ε)

∂ε
+

k∑
i=1

∂Ψi(e)

∂ε
−

k∑
i=1

Qi, (3)

dQi

dt
+

Qi

τi
=

1

τi
dev

[
∂Ψi(e)

∂e

]
. (4)

Finally, using quadratic energy functions, the constitutive problem in its incremental form can be put, as
shown in the eq. (5), where I is the second order identity tensor. In addition, Θ and F, corresponds, respectively,
to the trace of the infinitesimal strain tensor and the gradient deformation tensor.

given, Ω = {[Qi]n ,Fn,Fn+1} ,

compute:

{
σn+1 = K∞Θn+1I + 2G∞en+1 +

∑k
i=1 2Gien+1 −

∑k
i=1 [Qi]n+1

[Qi]n+1 according to eq. (6)
.

(5)

[Qi]n+1 =

(
τi

1 + τi/∆t

)[
1

τi
(2Gien+1) +

1

∆t
[Qi]n

]
. (6)
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Figure 1. One-dimensional classical and fractional Maxwell’s device

2.1 Fractional Models

The fractional models studied here are similar to the classic one shown above. The only difference relies
on the evolution of internal variables that now is given by a fractional differential equation. The fractional model
consists of replacing the dashpot by an element that allows the continuous transition between the viscous and
elastic behavior, as can be shown in the one-dimensional rheological model presented in Fig. (1), where α is a
new material parameter. This element recovers the elastic and viscous behavior for α = 0 and α = 1, respectively
(Haveroth [10]).

As previous mentioned, in this work the Grünwald-Letnikov (G.L) definition is used. This definition is given
by the limit of a sum and can be obtained by generalizing the integer order derivative, as shown in the eq. (7) for
a differentiable function, f(t). Where, Γ and ∆t, are the Gamma function and the time step. The derivation steps
are presented in detail in Oldham and Spanier [11].

dα

dtα
f (t) = lim

N→∞

{
[∆t ]

−α

Γ(−α)

N−1∑
j=0

Γ(j − α)

Γ(j + 1)
f (t− j∆t)

}
. (7)

The fractional viscoelastic model based on internal variables is given by a fractional differential equation, as
presented in the eq. (8). This format was proposed by Adolfsson and Enelund [6], where the finite kinematics has
been constrained to infinitesimal kinematics in the present work.

dαQi

dtα
+

Qi

ταi
=

1

ταi
dev

[
∂Ψi(e)

∂e

]
. (8)

The total stress given by the eq. (3) remains identical for the fractional model. Using the G.L fractional
derivative we can obtain the discrete form of the internal variable equation, as shown in eq. (9).

[Qi]n+1 =

(
ταi

1 + ταi /∆t

) 1

ταi
(2Gien+1)− 1

∆tα

N−1∑
j=1

Aj+1Qi(tn+1 − j∆tn)

 . (9)

Comparing the fractional eq. (9) with the classical eq. (6), we can observe that the fractional model recovers
the classical for α = 1, since A2 = −1 and A3 = A4 = AN = 0. Finally, the incremental fractional constitutive
problem with infinitesimal kinematics can be defined as,

given, Ω = {[Qi]n ,Fn,Fn+1} ,

compute:

{
σn+1 = K∞Θn+1I + 2G∞en+1 +

∑k
i=1 2Gien+1 −

∑k
i=1 [Qi]n+1

[Qi]n+1 According to the eq. (9).
.

(10)
The classical and fractional models with finite kinematics were formulated in a similar way to the infinitesimal

ones, only performing the proper kinematics considerations, as presented in Adolfsson and Enelund [6], Simo and
Hughes [8].

3 Results

The research group carried out cyclic and creep-recovery experimental tests, both on UHMWPE compression
samples. The cyclic tests were performed at two different strain rates and the creep-recovery tests at two stress
levels. Each test was repeated three times, using three different specimens, to ensure repeatability of results. The
experimental results presented in Fig. 2 are shown in true strain and nominal stress (or engineering stress). The
cyclic tests were performed at strain rates of 0.01% and 0.1% per second. The loading ramp was performed
with displacement control. The maximum amount of deformation was defined as the instant when the applied
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Constitutive modeling of viscoelastic materials: A quantitative comparison between classic and fractional models

compression load reached the nominal stress of 16 MPa. The motivation to control the maximum deformation by
the load and not by the displacement, was due to the need to protect the load cell, which supported up to 500 N.
Once this value was reached, the unloading ramp started at the same rate as the load. The minimum deformation
value was set to the instant when the load reached 2 N. This decision was taken to ensure contact between the
compression device and the sample.

The creep-recovery tests were conducted at two stress levels, 4 and 8 MPa. The loading ramp was performed
at a rate of 2 MPa/min until the test stress was reached. The samples were then held in creep for 24 hours. At the
end of this period they were unloaded up to the value of 2 N (for the same reason cited in the cyclic test). After
reaching this value the samples were kept in recovery for another 24h under load control.

3.1 Experimental curve fitting

As previously mentioned, this work seeks to compare the results of parameter fitting between classic and
fractional viscoelastic models. To complete this objective, curves were fitted in cyclic and creep-recovery loading.
First the experimental data are fitted separately. Then the results are presented using two creep and two cyclic
curves simultaneously. The simultaneous fitting is interesting because it allows to obtain a set of parameters
able to simulate the material behavior in various loading conditions. As pointed before, we investigated whether
fractional models improve the fitting ability using various experimental data. It is important to emphasize the use
in the literature of elasto-viscoplastic or viscoelastic-viscoplastic models for modeling the UHMWPE (Avanzini
[12], Bergström et al. [13, 14], Chen et al. [15], Hassan et al. [16], Khan et al. [17]). However, viscoelastic models
are used in this work in order to verify the adequacy and possible improvement when using fractional models. The
Table 1 shows the correspondence between the model names and the abbreviations used in this results section. The
number of branches corresponds to the number of Maxwell’s devices used .

Table 1. Abbreviation of model names used throughout the text.

Classic Viscoelastic Models (CVE) Fractional Viscoelastic Models (FVE)

Kinematics Infinitesimal (IN) Finite (FN) Infinitesimal (IN) Finite (FN)

Branches 1 2 1 2 1 2 1 2

Abbreviations CVE-IN-1 CVE-IN-2 CVE-FN-1 CVE-FN-2 FVE-IN-1 FVE-IN-2 FVE-FN-1 FVE-FN-2

Figures 2 and 3 show the results using one and two viscoelastic branches, respectively, in creep-recovery
and cyclic loading. It can be observed that using only one branch, the fractional models allows smoother curves
compared to the classic ones, including in the recovery phase. Whereas using two branches, the two model classes
showed very similar results. Curiously, the derivative orders of the fractional models converge to 1, that is, to the
classic models. Although viscoelastic models have represented the qualitative cyclic behaviour, the shapes of the
numerical curves are not in accordance with the experimental data, mainly in the loading phase. This fact may
be related to the existence of other nonlinear phenomena not taken into account, such as ratchetting (Chen et al.
[15] and Yu et al. [18]). To help the comparison, Table 2 presents a rank containing the number of parameters and
values of the objective function, g(x), obtained in the fittings using cyclic and creep-recovery data separately.

Table 2. Rank with information of number of parameters and value of the objective function. Creep and Cyclical
data fitted separately.

Model CVE-FN-2 FVE-FN-2 CVE-IN-2 FVE-IN-2 FVE-FN-1 FVE-IN-1 CVE-FN-1 CVE-IN-1

Number of parameters 5 7 5 7 4 4 3 3

g(x)[103]-Creep-recovery 6.01 6.03 7.32 7.32 7.77 8.98 10.66 11.88

g(x)[102]-Cyclic 3.61 3.61 2.72 2.72 4.59 3.54 8.11 6.64

It is also interesting to analyze the processing time spent on solving the optimization problem. Table 3 shows
the CPU time for the fitting using two viscoelastic branches with infinitesimal and finite kinematics. The results
refer to the complete optimization process, i.e., five rounds of PSO are performed, followed by the gradient-based
method. The data were normalized in relation to the time spent by the classic two branches model (CVE-IN-2).
As it can be seen, the fractional models had a computational cost considerably higher than the classics, reaching
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Figure 2. Experimental and numerical data in creep-recovery and cyclic loading. Parameter fitting using data
separately and one viscoelastic Maxwell’s device.
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(c) Strain rate of 0.01%s−1 - Two branches
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Figure 3. Experimental and numerical data in creep-recovery and cyclic loading. Parameter fitting using data
separately and two viscoelastic Maxwell’s devices.
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Table 3. CPU time to solve the optimization for the models with two branches.

Models CVE-IN-2 FVE-IN-2 CVE-FN-2 FVE-FN-2

Relative time [s/s] 1 2.86 times CVE-IN-2 3.04 times CVE-IN-2 4.57 times CVE-IN-2

times even 4.5x greater than the CVE-IN-2. This is related to the fact that the fractional models consider all the
past history of the internal variables. It is important to mention that some authors present techniques to reduce this
cost, such as Schmidt and Gaul [19] and Zopf et al. [20]. In this work we have not used such techniques, because
the objective is to analyze the possible improvement when using fractional models and compare them with the
classics.

From this point on we will present the results using simultaneously cyclical and creep data for parameter
fitting. Table 4 shows the parameters and values of the objective function, g(x), using one and two branches. From
Table 4 one can see that the fractional models presented better objective function results, including when it is used
two branches. The difference between the classic and fractional models with one branch is considerably large.
While with two this difference is smaller.

While for the individual fittings the fractional model converged to the classic one, in the simultaneous fitting
this does not happen. We can see that one of derivative orders (α) found was not integer, as shown in Table 4. In
general, it can be said that the fractional models have slightly improved the simultaneous fittings.

Table 4. Viscoelastic parameters in creep-recovery and cyclic loading with infinitesimal and finite strain. Sorted
according to the value of the objective function.

g(x)[10−2]
ν0 G∞ G1 τ1[103] α1 G2 τ2 α2

Models Total Cyclic Creep

FVE-IN-2 5.66 4.13 1.52 0.46 10.00 34.7765 251.7401 1 147.4471 46.8032 0.7312

FVE-FN-2 6.40 4.94 1.46 0.46 3.6895 43.3337 303.8491 0.9999 167.6226 39.5119 0.7108

CVE-IN-2 6.62 5.38 1.24 0.46 17.2565 30.4868 170.7551 - 113.5487 85.6239 -

CVE-FN-2 7.57 6.45 1.12 0.46 17.4256 33.2461 168.0647 - 122.1393 82.5703 -

FVE-IN-1 12.01 5.46 6.54 0.46 17.7980 35820.6522 1.6539 x 10−12 0.2456 - - -

FVE-FN-1 13.05 6.38 6.66 0.46 18.3599 37229.2685 1.6881 x 10−12 0.2446 - - -

CVE-IN-1 28.24 5.024 23.22 0.46 44.1903 115.2043 93.4580 x 10−3 - - - -

CVE-FN-1 29.35 6.11 23.24 0.46 46.6825 123.7070 91.0634 x 10−3 - - - -

4 Conclusions

As presented, the main objective of this work was the comparison between classic and fractional viscoelastic
models using experimental data from the UHMWPE under cyclic and creep-recovery loading. The experimental
results under these conditions were shown and fittings were made using a hybrid optimization procedure. In
the individuals fittings the fractional models showed better performance when only one viscoelastic branch was
used. However, this improvement became insignificant with two or more branches. Whereas in the simultaneous
fitting, the fractional models were superior to the classics using one and two viscoelastic Maxwell’s devices.
However, this improvement was small with two branches. In addition, it should also be considered that fractional
models require higher computational cost than classic models, since it considers the complete history of internal
variables (or a portion, when cost reduction techniques are used). In this way, the use of classic models can be
more interesting, since they present similar results as fractional models when, at least, two branches are used.
Comparing the models with infinitesimal and finite kinematics, we show that the use of the second class did
not result in significant improvement. This may justify the choice for models with infinitesimal kinematics and
indicates that material nonlinearity may be predominant in relation to geometry nonlinearity, under these presented
test conditions. Finally, it was observed that the numerical results in creep-recovery showed better agreement with
the experimental data, while the shape of predicted cyclic tests were not represented satisfactorily. This may be
related to nonlinear phenomena not taken into account in the presented viscoelastic models, such as ratcheting.
Therefore, it is suggested the formulation of viscoelastic-viscoplastic models capable of representing the shape of
the curve in the loading phase in cyclical tests. In a next work we will present this class of models with classic and
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fractional formulations.

Acknowledgements. Financial supports by the Brazilian agencies CAPES and CNPq, are appreciated.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] Ward, I. M. & Sweeney, J., 2012. Mechanical properties of solid polymers. John Wiley & Sons.
[2] Xu, J., Chen, Y., Tai, Y., Xu, X., Shi, G., & Chen, N., 2020. Vibration analysis of complex fractional viscoelas-
tic beam structures by the wave method. International Journal of Mechanical Sciences, vol. 167, pp. 105204.
[3] Amabili, M., Balasubramanian, P., & Breslavsky, I., 2019. Anisotropic fractional viscoelastic constitutive
models for human descending thoracic aortas. Journal of the mechanical behavior of biomedical materials, vol.
99, pp. 186–197.
[4] Meng, R., Yin, D., & Drapaca, C. S., 2019. A variable order fractional constitutive model of the viscoelastic
behavior of polymers. International Journal of Non-Linear Mechanics, vol. 113, pp. 171–177.
[5] Xiao, R., Sun, H., & Chen, W., 2016. An equivalence between generalized Maxwell model and fractional
Zener model. Mechanics of Materials, vol. 100, pp. 148–153.
[6] Adolfsson, K. & Enelund, M., 2003. Fractional derivative viscoelasticity at large deformations. Nonlinear
dynamics, vol. 33, n. 3, pp. 301–321.
[7] Khajehsaeid, H., 2018. Application of fractional time derivatives in modeling the finite deformation viscoelas-
tic behavior of carbon-black filled nr and sbr. Polymer Testing, vol. 68, pp. 110–115.
[8] Simo, J. C. & Hughes, T. J., 2006. Computational inelasticity, volume 7. Springer Science & Business Media.
[9] Tschoegl, N. W., Knauss, W. G., & Emri, I., 2002. Poisson’s ratio in linear viscoelasticity–a critical review.
Mechanics of Time-Dependent Materials, vol. 6, n. 1, pp. 3–51.
[10] Haveroth, T. C. d. C., 2015. On the use of fractional derivatives for modeling nonlinear viscoelasticity.
[11] Oldham, K. & Spanier, J., 2002. The fractional calculus theory and applications of differentiation and
integration to arbitrary order, volume 111. Elsevier.
[12] Avanzini, A., 2008. Mechanical characterization and finite element modelling of cyclic stress–strain be-
haviour of ultra high molecular weight polyethylene. Materials & Design, vol. 29, n. 2, pp. 330–343.
[13] Bergström, J., Kurtz, S., Rimnac, C., & Edidin, A., 2002. Constitutive modeling of ultra-high molecular
weight polyethylene under large-deformation and cyclic loading conditions. Biomaterials, vol. 23, n. 11, pp.
2329–2343.
[14] Bergström, J., Rimnac, C., & Kurtz, S., 2004. An augmented hybrid constitutive model for simulation of
unloading and cyclic loading behavior of conventional and highly crosslinked uhmwpe. Biomaterials, vol. 25, n.
11, pp. 2171–2178.
[15] Chen, K., Kang, G., Yu, C., Lu, F., & Jiang, H., 2016. Time-dependent uniaxial ratchetting of ultrahigh
molecular weight polyethylene polymer: viscoelastic–viscoplastic constitutive model. Journal of Applied Me-
chanics, vol. 83, n. 10.
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