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Abstract. In this work, based on Kelvin-Voigt mechanical model, the viscoelastic damping on the dynamic 

instability of axially loaded rectangular plates is studied. A thin stainless-steel rectangular plate with linear 

rotational springs at the edges is considered. The non-linear Von-Kármán relations are used to describe the 
deformation relations of plates and the system of non-linear dynamic equilibrium equations is found through the 

Hamilton principle by application of the Rayleigh-Ritz method, which are in turn, solved by the fourth-order 

Runge-Kutta method. The bifurcation diagrams, the phase portraits and the Poincaré maps are obtained for the 

principal and secondary instability regions. For lower values of axial loading, the non-trivial solutions analyzed 

in the secondary region of dynamic instability are characterized by two periodic responses of period 1T, at the 

principal instability region, a periodic solution of period 2T is observed. When the plate is analyzed with higher 

levels of axial loading, this response may have periods of high order, and quasi-periodic and chaotic responses 

are also found. 
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1  Introduction 

Plates are structural systems defined with bi-dimensional coordinates with one of its dimensions much 
smaller than others and, depending in the imposed loads, they can display complex nonlinear vibrations. Some 

plates are composed with materials such as rubber or biomaterials, and display gradative deformations in time 

when subjected to constant stress, which means a dissipative viscoelastic behavior. 

A viscoelastic behavior is characterized by time depending constitutive equations and is composed by both 

elastic and damped terms. The viscoelastic analysis can be considered in several engineering areas such as 

damping in structures, where viscoelastic models can be used to describe damping. Amabili [1] and Flügge [2], 

indicate that one of the ways to perform viscoelastic analysis is considering a mechanical model such as: Kelvin-

Voigt, Zener or Boltzmann. 

Amabili [3] applied the Kelvin-Voigt model to study the non-linear vibrations of rectangular plates and 

compared viscoelastic damping with viscous damping observing that, the frequency response is different for 

different levels of damping. Balasubramanian et al [4] studied the influence of viscoelastic damping in rubber 

plates considering the Kelvin-Voigt material model and comparing numerical and experimental results. It was 
observed that the Kelvin-Voigt has some limitations for large amplitude oscillations were it is necessary to 

increase the viscoelastic parameter to find convergence between numerical and experimental results. 

Amabili [5] presented a model applying the Zener to consider nonlinear damping. In this model it is 

possible to describe the nonlinear dynamic behavior of plates for different non-linearity levels considering only 

two damping coefficients. Other studies considering viscoelastic models can be found in Xia and Lukasiewicz 

[6, 7], Sun and Zhang [8] and Del Prado, Soares and Dias [9]. 

In this work the Kelvin-Voigt viscoelastic model is applied to study the nonlinear vibrations of clamped 

steel rectangular plates subjected to axial harmonic loads and to describe the clamped boundary conditions, 

rotational spring are considered. The Rayleigh-Ritz method together with the modified Hamilton principle are 

used to obtain a set of nonlinear dynamic equilibrium equations which are solved by the Runge-Kutta method. 

The bifurcation diagrams are obtained for the principal and secondary instability regions. A detailed study of 
response periodicity is performed to evaluated the effect of damping on the nonlinear response. 
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2  Mathematical Formulation 

Consider a rectangular perfect clamped viscoelastic plate with coordinates (x; y; z) and displacement fields 

u, v and w, respectively with origin (O) at the corner of the plate. The plate has dimension a, b, thickness h, 

density , Young modulus E and is subjected to and axial harmonic force with amplitude Nx,1 and frequency  

as shown in Fig. 1 (Del Prado, Soares and Dias [9]). 

 

Figure 1. Viscoelastic plate under harmonic axial load 

The non-linear strain-displacement relations of the mean surface and the changes of curvature can be 

described using the Von-Kármán theory (Amabili [10]) as given by: 
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where x, y e xy are the strain componentes at any point of the plate, and are related to the mean surfasse by x0, 

y0 e xy,0 and changes of curvature and torsion at the mean surface are kx, ky e kxy.  

The Kelvin-Voigt mechanical model is considered to describe the viscoelastic behavior of the plate, and the 

constitutive equation is given by:  
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where E is the Young modulus and  is the viscoelasticity coefficient given in seconds (s).  

The potential energy of the plate is:  
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Substituting eq (1) and eq (2) in eq (3), the energy functional of the viscoelastic plate can be obtained and it 

can be described by the sum of the elastic (UE) and viscoelastic (UV) terms, as given by: 
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Rotational springs with stiffness kr are placed in all boundaries of the plate, then, its potential energy (UM) 

is:  
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Finally, the total potential energy of the plate results in: 

 P MU U U= +  (6) 

If kr = 0 we have a simply-supported plate and for a very high value of kr we have a fully clamped plate. 

When comparing numerical and experimental results, it is necessary to make a convergence analysis to find the 
correct value of kr, this is done when the experimental and numerical natural frequency are compared. The in-

plane boundary conditions with axial moving supports, is considered to represent the simply-supported plate 

with moving boundaries (Amabili [10]). Then, to satisfy all boundary conditions, the following u, v and w fields 

displacements are adopted: 
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where m e n are respectively the half-wave numbers in x and y directions; M and N are the number of terms used 

in each field displacement and um,n(t), vm,n(t) e wm,n(t) are the unknown amplitudes. The vector of generalized 

amplitudes is given by:  

 , , ,( ), ( ), ( )
T

m n m n m nu t v t w t =  q  (8) 

where the dimension of q is given by Nq, which is the total of degrees of freedom of all field displacement. 

The work done by the axial external axial load along the boindaries x = 0, a is given by: 
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where Nx,1 is the load amplitude and  is the frequency of excitation. 

The kinetic energy, disregarding rotational energy, is given by: 
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The Rayleigh-Ritz method together with the Hamilton principle are used to obtain the set of nonlinear 

dynamics equations as:  
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where M is the diagonal mass matrix of dimensions Nq  Nq; G, G2(q) and G3(q, q) are, the linear, quadratic and 

cubic viscoelastic damping matrix, respectively; K, K2(q) and K3(q, q) are the linear quadratic and cubic 

stiffness matrix, respectively; F is the load vector and q̈, q̇ and q are the acceleration, velocity and displacement 

vectors, respectively. 

3  Numerical Results 

In this analysis, a thin stainless-steel rectangular plate is considered. This plate was studied by Amabili [5] 

and has the following physical and geometrical properties: a = 0.25 m, b = 0.24 m, h = 0.0005 m, E = 193 GPa, 

 = 8000 kg/m³ and  = 0.29. The rotational springs have the following equivalent stiffness kr = 100 N/rad and 

the Kelvin-Voigt viscoelastic material has the dissipation parameter  = 5 10-6 s, typical of light damped 

materials. The plate is subjected to an axial load at borders x = 0, a as shown in Fig. 1. To model the plate, 22 

degrees of freedom in the field displacements were considered as seen in Tab. 1. For this plate, the natural 

frequency of the plate 1,1 = 391.41 rad/s and the axial buckling load is found to be Ncr = 3297.29 N/m. 

Table 1. Generalized coordinates utilized in the expansions of the displacements 

Displacements Generalized coordinates 

u u1,1, u1,3, u3,1, u3,3, u1,5, u5,1, u3,5, u5,3, u5,5 
v v1,1, v1,3, v3,1, v3,3, v1,5, v5,1, v3,5, v5,3, v5,5 

w w1,1, w1,3, w3,1, w3,3 

Now, the escape mechanisms of the plate due to axial load will be discussed, all bifurcations diagrams were 

obtained using the brute force method (Del Prado [11]). Figure 2 displays the bifurcations diagrams due to 

incremental values of axial load in the main ( = 2.0 1,1) (Fig. 2c and 2d) and secondary ( = 1.0 1,1) (Fig. 2a 

and 2b) instability regions. 

  
(a) /1,1 = 0,90 (b) /1,1 = 1,05 
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(c) /1,1 = 1,90 (d) /1,1 = 2,00 

Figure 2. Bifurcation diagrams of stainless-steel plate 

Figure 2a shows that for small values of the axial load, only trivial solutions of the plate are displayed. As 

the axial load is increased, at a critical value, the plate displays non-trivial solutions with super and sub-critical 

bifurcations. First, in Fig. 2a, the plate displays supercritical bifurcation, is the value of axial load is increased, 

the amplitude of vibrations are also increased with large amplitudes with a jump and a windows of quasi periodic 

solutions. In Fig. 2b, after trivial solutions, the plates shows a jump to large amplitude vibrations and also a 

window of quase periodic oscillations. 
Now, for the main instability region in Fig. 2c, as the axial load is increased and at a critical point, the plate 

displays super-critical bifurcations with increasing values of amplitude vibrations. When the axial load continues 

to be increased, the plate shows windows with quasi periodic, chaotic and high periodic solutions. Finally, in 

Fig. 2d, the plate does not display trivial solutions but increasing periodic vibrations and, for large values of the 

axial load, there are windows with quasi periodic, chaotic and high periodic solutions. For example, at 1 = 1.40 

the plate shows quasi periodic oscillations and at 1 = 1.53 the plate displays 10T periodic vibrations. 

In Fig. 3, the phase portraits and Poincaré maps of some points of bifurcation diagrams of Fig. 2 are 

displayed. In the secondary region of dynamic instability, Fig. 3a shows the phase portraits and Poincaré maps 

corresponding to /1,1 = 0.90 and 1 = 0.80 of Fig. 2a, as can be observed, the plate shows two 1T (black and 

red dots) solutions. Now, Fig. 3b, displays mapping for /1,1 = 1.05 and 1 = 0.80 of Fig. 2b, at this load value 

it can be observed one trivial and two 1T periodic solutions. Quasi periodic oscillations can be observed at 

/1,1= 1.05 and 1 = 1.60 from Fig. 2b at.  

 

  
(a) Phase portraits and Poincaré maps at 

/1,1 = 0.90 and 1 = 0.80 

(b) Phase portraits with Poincaré maps at 

/1,1 = 1.05 and 1 = 0.80 
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(c) Poincaré maps at /1,1= 1.05 and 1 = 1.60  (d) Phase portraits with Poincaré maps at 

/1,1 = 1.90 and 1 = 0.80 

  
(e) Phase portraits with Poincaré maps at 

/1,1 = 1.90 and 1 = 1.53 
(f) Poincaré maps at /1,1 = 1.90 and 1 = 1.70 

Figure 3. Phase portraits and Poincaré maps of stainless-steel plate 

Now at the main region of dynamic instability, Fig. 3d. display the mapping at /1,1 = 1.90 and 1 = 0.80 

from Fig. 2c, it is possible to observe one 2T stable periodic solution. At the other side, in Fig. 3e for 

/1,1 = 1.90 and 1 = 1.53 from Fig. 2c, the plate shows 10T stable periodic solutions and finally, in Fig. 3f, at 

/1,1 = 1.90 and 1 = 1.70 form Fig. 2c, the plate presents chaotic large amplitude vibrations. 

4  Concluding Remarks 

In a general way obtained results showed that for small values of the axial load (ex. 1 = 0.8), the non-

trivial solutions of the plate are characterized by two 1T periodic solutions in the secondary ( = 1.01,1) 

instability region. At the principal region of dynamic instability ( = 2.01,1) and for the same load level, the 

response of the plate is characterized by a 2T periodic solutions. For higher levels of axial load, it is possible to 

observe quasi periodic, chaotic and high period vibrations. Also, solutions found for the secondary region of 

instability, are more complex than solutions for the principal instability region. 

Acknowledgements. This work was made possible by the support of the Coordination of Higher Level 

Personal Improvement – CAPES and Federal University of Goias computational laboratories. 

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the 

authorship of this work, and that all material that has been herein included as part of the present paper is either 

the property (and authorship) of the authors, or has the permission of the owners to be included here. 



P. Dias, Z. del Prado, R. Soares 

CILAMCE 2020 

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC 

Foz do Iguaçu/PR, Brazil, November 16-19, 2020 

 

References 

[1] M. Amabili. Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials. Cambridge 
University Press, 2018. 582 p.  
[2] W. Flügge, Viscoelasticity. Springer Science & Business Media, 2013. 204 p. 
[3] M. Amabili, “Nonlinear vibrations of viscoelastic rectangular plates”. Journal Sound Vibrations. v 362, p. 142–156, 2016. 
[4] P. Balasubramanian, G. Ferrari, M. Amabili, Z. J. G. N. Del Prado, “Experimental and theoretical study on large 
amplitude vibrations of clamped rubber plates”. International Journal of Non-Linear Mechanics, v 94, p. 36–45, 2017. 
[5] M. Amabili, “Nonlinear damping in nonlinear vibrations of rectangular plates: Derivation from viscoelasticity and 

experimental validation”. Journal of the Mechanics and Physics of Solids. v 118, p. 275–292, 2018.  
[6] Z. Q. Xia, S. Lukasiewicz, “Non-linear, free, damped vibrations of sandwich plates”. Journal of Sound and Vibration. 

v 175, p. 219-232, 1994. 
[7] Z. Q. Xia, S. Lukasiewicz, “Nonlinear damped vibrations of simply-supported rectangular sandwich plates”. Nonlinear 
Dynamics. v 8, p. 417–433, 1995. 
[8] Y. X. Sun, S. Y. Zhang, “Chaotic dynamic analysis of viscoelastic plates”. International Journal of Mechanical Sciences. 
v 43, p. 1195–1208, 2001. 
[9] Z. J. G. N. del Prado, R. M. Soares, P. V. I. Dias, “Dynamic Instability of viscoelastic rectangular plates”. In: XL Ibero-

Latin-American Congress on Computational Methods in Engineering (XL CILAMCE), Natal: UFRN, 2019, p. 1-10. 
[10] M. Amabili. Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, 2008. 392 p. 
[11] Z. J. G. N. Del Prado. Acoplamento e interação modal na instabilidade dinâmica de cascas cilíndricas. Tese (Doutorado 
em Engenharia Civil) – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro, Rio de 
Janeiro, 2001. 

 
 
 
 


