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Abstract. In this paper we analyze the nonlinear vibrations of cylindrical shells, composed by functionally 

graded material, on an elastic foundation with circumferential discontinuity. The equilibrium equations are 

obtained from Donnell nonlinear theories and the elastic foundation is represented by Winkler model. The 

standard Galerkin's method was applied to discretize the differential partial equations and the perturbation 

method is used to describe the modal coupling of the solution that will be used in analysis. The nonlinear 

vibration of the shell will be studied through the frequency spectrum and frequency-amplitude relation, 

investigating the influence of some system parameters and the proposed modal solution for the transverse 

displacement field. Resonance curves for nonlinear forced vibrations and phase portrait are also evaluated, 

showing the complex behavior of nonlinear oscillations of shells with discontinuity of the elastic foundation. 
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1  Introduction 

Cylindrical shells with discontinuity of the elastic base along its circumference can be found in various 

applications of these structures. However, few studies on nonlinear vibrations are found for this type of 

discontinuity of the elastic base and most studies focus on the analysis of problems with elastic foundation 

throughout its surface. 

Amabili and Dalpiaz [1] investigated a linear analysis of cylindrical shells resting on elastic foundation 

with circumferential discontinuity. In their approach, the authors consider an expansion of the displacement field 

in Fourier series and the problem of eigenvalue is obtained through the Rayleigh quotient. Natural frequencies 

were obtained, and the results compared with a finite element model. In this issue, there are parametric studies 

developed by Tj et al. [2, 3] that demonstrated the behavior of linear vibrations of the cylindrical shell according 

to the distribution of the elastic foundation. 

Nejad and Bideleh [4] studied the free nonlinear vibration of cylindrical shells on an elastic foundation 

subjected to a lateral loading, according to Sanders theory and considering the discontinuous elastic base on the 

circumferential direction of the shell. Sheng and Wang [5] presented an investigation of the dynamic behavior of 

elastic-based cylindrical shells across their surface, demonstrating, from a parametric analysis, that the 

phenomenon is quite complex resulting in a different nonlinear behaviors of the softening or hardening type. 

Rodrigues [6] and Silva et al. [7] analyzed the nonlinear vibrations considering the discontinuity in the 

longitudinal direction of the cylindrical shell, demonstrating that depending on the position where there is no 

elastic base the forced vibrations of the system are much greater than the vibrations of a cylindrical shell totally 

in contact with an elastic base. 
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2  Mathematical formulation 

Consider a cylindrical shell with radius R and thickness h, where h << R, length L and without initial 

geometric imperfections. Figure 1(a) shows the cylindrical shell’s geometry as well as its displacement fields in 

axial (u), circumferential (v) and transversal (w) directions with its coordinate axes of the used system, namely: 

x,  and z. The cylindrical shell is composed of a functional graded material, which varies in the direction of 

thickness, and is simply supported on a discontinuous elastic foundation, delimited at its extremes by θE and θD, 

as shown in Fig. 1(b), and continuous in the longitudinal direction. The driver force is a time dependent lateral 

pressure given by: 

    1sin cos .L
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Where PL is the pressure amplitude, Wθ is a function that determines the distribution of loading in the 

circumferential direction, m is the number of half-waves in the longitudinal direction, ω1 is the frequency of 

excitation of the lateral pressure and t is the time. 

Donnell's nonlinear theory, which describes the deformation fields, rotations, and curvature changes of the 

middle surface - in terms of displacements u, v and w - is given by: 
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Where eq. (2) relates to the deformation field while eq. (3) relates to the rotations and the curvature 

changes. 

The elastic foundation is represented by a Winkler model with KW stiffness modulus and the discontinuity 

of the elastic base is given by a Heaviside function, H(θ), where the origin of the axis of circumferential 

coordinates can be seen in Fig. 1(b). From this, the reaction equation of the elastic base is given by: 

     .B W E DP K w H H            (4) 

 

 
 

(a) (b) (c) 

Figure 1. Shell characteristics (a) geometry (b) circumferential discontinuity and (c) harmonic lateral pressure  

Equation (5) represents the nonlinear equilibrium equations of the cylindrical shell, described in terms of 

internal resultants where Nx, Nθ, Nxθ are membrane stresses and Mx, Mθ, Mxθ are bending and torsional moments, 

∇4 is the bi-harmonic operator of Laplace in cylindrical coordinates, η1 is viscous damping, η2 is the elastic 

viscous damping of the material, ω0 is the natural frequency of cylindrical shell and ρ1 is the average density of 

the material distributed in the thickness of the shell. 

The resulting internal forces and moments are given in terms of deformations and changes in curvatures of 

the middle surface and they are presented in eq. (6), where Aij, Bij, Cij (i,j = 1, 2, 6) are the terms of the elastic 

constitutive matrix that consider the effect of graded material. The physical parameters, E, ρ and ν are described 

assuming a sandwich distribution, ranging as P = (PA- PC)VA(z)+PC, where PA and PC are the properties of 

E D

0
P + P(t)B 
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materials A and C, respectively, and VA(z) = (1-4z²/h²)2N+1 is the sandwich gradation equation [6, 7]. 
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2.1 Reduced-order model in the circumferential direction of the shell  

Consider a simply supported perfect cylindrical shell with radius R=0.6 m, length L=0.6 m, thickness 

h=0.003 m and θD=-θE=22.5º. The materials of functional gradation are: steel, called material A, and a ceramic 

material, called material C. The properties of the materials are: EA= 205.1 × 109 N/m2, ρA= 8900 kg/m3, νA= 0.31, 

EC= 322.3 × 109 N/m2, ρC= 2370 kg/m3 and νC= 0.24. In the analyses that will be presented the stiffness modulus 

of the elastic base is dimensioned according to KW= KnWA11/R2. 

According to Silva et al. [8], in the cylindrical shells the natural frequencies occur in pairs with where the 

vibration modes are described by cos(nθ) or sin(nθ) in the circumferential direction. Here, n is the number of 

circumferential waves. However, for problems with circumferential discontinuity in the elastic foundation, the 

vibration modes and the natural frequencies are different with the transversal displacement field written as a 

Fourier series [1]. 

 

 
             (a) 

 
             (b) 

Figure 2. Vibration mode of a cylindrical shell for different KnW values. (a) “Cosine mode” and (b) “Sine mode”. 

― KnW = 0.003, ― KnW = 0.015, ― KnW = 0.03, ― KnW = 0.06 and ― KnW = 0.12. 

Figure 2 shows the amplitude of vibration modes for x=L/2 for different stiffness of elastic bases that were 

obtained using ABAQUS® FEM software, using a mesh with S4R elements that guarantees the convergence to 

obtain the natural frequencies of the cylindrical shell with discontinuous elastic base. We use ABAQUS® FEM 

software as a strategy to investigate the main terms of a given Fourier series that participate in the natural 

vibration mode of the cylindrical shell resting on a discontinuous elastic base. The "Cosine modes" and "Sine 

modes" are thus named because they refer to the Fourier series that generates these vibration modes due to the 

uncoupled problem [1]. To obtain a reduced order model to describe the vibration mode of the problem 

appropriately, the Fourier transform is applied to the results obtained from finite element software. For the 

quantification of the participation of each modal expansion, the Parseval theorem is considered, eq. (7), 
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assuming that the velocity has a law analogous to the transversal displacement. 
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In eq. (7), ω0 is the natural frequency of the shell and F(iω) is the amplitude of the frequency obtained by 

the Fourier transform. Also, in eq. (7) it is possible to relate the participation of frequencies, which generate each 

mode of vibration, in kinetic energy. The region of most relevant frequencies will be the one that directly has the 

greatest contribution in the kinetic energy of the cylindrical shell. Then, the methodology for determining these 

regions is based on the percentage contribution of the sum of the squares of the amplitudes in the region of 

frequencies delimited to an acceptance criterion.  

 

 
        (a) 

 
         (b) 

Figure 3. Frequency spectrum of a cylindrical shell for different KnW values. (a) “Cosine mode” and (b) “Sine 

mode”. ― KnW = 0.003, ― KnW = 0.015, ― KnW = 0.03, ― KnW = 0.06 and ― KnW = 0.12 

 
       (a) 

 
       (b) 

Figure 4. Accumulated energy in frequency domain for different KnW values. (a) “Cosine mode” and (b) “Sine 

mode”. ― KnW = 0.003, ― KnW = 0.015, ― KnW = 0.03, ― KnW = 0.06 and ― KnW = 0.12 

Figure 3 shows the frequency spectrum of the models and Fig. 4 shows the accumulated sum of eq. (7), 

where it is observed that in the region 7 ≤ ω ≤ 9 represents 80% and 85% total kinetic energy when analyzed, 

respectively, the "Cosine modes" and "Sine modes". Then, to obtain the nonlinear modal solution of this model 

associated with the main vibration modes the following initial solution will be adopted in the perturbation 

method to obtain a reduced order model to displacement field [6-10]: 

            0 8,1 9,1cos 8 sin cos 9 sin ;C C Cw W q W q        (8) 
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Being, in eq. (8) and eq.(9), q = mπ, ξ =x/L, with 0 ≤ ξ ≤ 1 and m = 1. The modal solution was derived 

through the perturbation method - using as seed solution eq. (8) or eq.(9) - is presented containing all the degrees 

of freedom that arise from the modal couplings of the quadratic and cubic terms that are present in the equation 
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of nonlinear equilibrium of the cylindrical shell: 
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Where in eq. (10) the following simplification was adopted, being τ = tω0: 
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The modal solution for the displacements field, u and v, with their modal couplings are obtained by 

expanding these displacements in terms of modal solution w. Applying the procedure proposed by Silva [9] and 

Gonçalves et al. [10] a consistent system is obtained for the displacement fields u and v, given by: 
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Where in eqs. (12) and (13) the following simplification was adopted, being τ = tω0: 
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From the obtained modal solutions, the reduced order models are assembled in the following form: the 

model of "Cosine modes" consists of modal expansions (uC, vS, wC) and "Sine modes" with (uS, vC, wS). The 

Galerkin method is applied to discretize the partial differential equations of eq. (5), obtaining a nonlinear system 

of second-order equations in relation to τ where the amplitudes of u and v can be written in terms of w. 

3  Numerical results and discussions 

In numerical results that will be presented below, the physical and geometric parameters was defined in the 

previous section and a non-dimensional value of the elastic base is given by KnW = 0.003. In analysis of 

resonance curves, consider the viscous damping η1 = 0.001, the elastic viscous damping η2 = 0, the amplitude of 

lateral harmonic pressure PL = 5000 N/m² and Wθ = [P8Ccos(8θ) + P8Ssin(8θ) + P9Ccos(9θ) + P9Ssin(9θ)]sin(qξ) 

where the terms: P8C, P8S, P9C and P9C are a 0-1 factor that excites directly the modes that are in the initial 

solution of the perturbation method.  

Figure 5 shows the nonlinear frequency-amplitude relation for the "Cosine modes" and "Sine modes" which 

they were obtained using the shooting method [8]. The convergence analysis is carried out by adding the terms 

of greater order of the expansion w. It is observed that only with the inclusion of the terms of the third order of 

w, which are those generated by the modal coupling derived from the cubic terms, are sufficient for a 
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convergence up to the amplitude of the shell thickness for both "Cosine modes" and "Sine mode" models. 

 

 
     (a) 

 
      (b) 

Figure 5. Convergence of the frequency-amplitude relation for both: (a) “cosine mode” and (b) “sine mode”, 

considering a simply supported cylindrical shell. 7-dof: W8,1 + W9,1 + W0,0 + W1,0 + W16,0 + W17,0 + W18,0. 9-dof: 

W8,1 + W9,1 + W0,0 + W1,0 + W16,0 + W17,0 + W18,0 + W8,3 + W9,3. 15-dof: W8,1 + W9,1 + W0,0 + W1,0 + W16,0 + W17,0 + 

W18,0 + W8,3 + W9,3 + W7,1 + W10,1 + W24,1 + W25,1 + W26,1 + W27,1. 21-dof: W8,1 + W9,1 + W0,0 + W1,0 + W16,0 + W17,0 

+ W18,0 + W8,3 + W9,3 + W7,1 + W10,1 + W24,1 + W25,1 + W26,1 + W27,1 + W7,3+W10,3 + W24,3 + W25,3 + W26,3 + W27,3. 

  
         (a)           (b) 

Figure 6. Resonance curves for a simply supported cylindrical shell and “Cosine mode”. The gray curve 

represents a cylindrical shell resting on elastic base without discontinuity while the blue curve represents the 

cylindrical shell resting on discontinuous elastic base (a) W8,1, (b) W9,1. (KnW = 0.003, P8C = 1, P8S=P9C=P9S = 0) 

  
              (a)           (b) 

Figure 7. Phase-portrait with Poincaré map for “Cosine mode” for a simply supported cylindrical shell: (a) ω1/ 

ω0 = 0.972, (b) ω1/ ω0 = 1.064. (KnW = 0.003, P8C = 1, P8S=P9C=P9S = 0) 

Figure 6 shows the resonance curves obtained for the excitation mode (m = 1, n = 8 , P8C = 1, P8S = P9C = P9S 

= 0) of the harmonic pressure, considering the "Cosine mode" model. The gray resonances curves are related to a 

simply supported cylindrical surrounding by the same elastic base. From these resonance curves it is possible to 
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observe a complex behavior of the cylindrical shell with several dynamic jumps with a competition between 

resonant and non-resonant responses in the region close to the resonance. When its resonance curve is compared 

to a case surrounded by the elastic base, it is observed several changes in these results, indicating that the 

discontinuity on the elastic base can changes significantly the nonlinear response. The results also demonstrate 

that, for this case studied, the behavior of the cylindrical shell is quite similar between the fundamental modes of 

the shell, as can be seen for the amplitude W8,1 - Fig. 6 (a) - and W9,1 - Fig. 6 (b) - which they suggest an analysis 

of possible internal resonances between the fundamental modes. Due to discontinuity of the elastic base, it is still 

possible to observe the occurrence of both quasi-periodic (black phase portrait) and periodic (yellow phase 

portrait) responses along the resonance curves as shown in Fig 7 that did not occur for the surrounded case 

(green phase portrait). 

4  Conclusions 

In this paper, the nonlinear vibration of the shell with a circumferential discontinuity was studied through 

the frequency-response curve and frequency-amplitude relation, a low dimensional model was derived and an 

investigation of the influence of some system parameters and the proposed modal solution was evaluated. 

Resonance curves for nonlinear forced vibrations showed the complex behavior of nonlinear oscillations of 

shells with discontinuity of the elastic foundation and the importance of the modal coupling to obtain the 

reduced order model. 
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