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Abstract. A major issue in analysing wave propagation problems is the geometric and time domain discretizations,
which if it is not properly performed, may lead to poor results or computational issues such as memory overflow.
Ideally, an analytical solution for the Partial Differential Equation is desired since it may provide results for any
given pair (~x, t) independently of mesh size, time step and without any previous iteration. In this paper, an approx-
imate analytical solution of the wave equation is used in order to simulate the behavior of any periodic signal in
one dimensional domains. The periodic signal is approximated using Fourier series with the sine and cosine terms
evaluated analytically and their respective coefficients evaluated numerically using Gauss-Legendre integration
rule. A Python 3.7 Application Programming Interface was developed using an object oriented approach, allowing
user defined periodic input function, spatial domain size, time range, number of Fourier terms used and static and
dynamic solution plotting. Dirichlet Boundary Conditions defined as time periodic functions are considered and
three different functions, rectangular pulse, sawtooth wave and Gaussian pulse, are evaluated and their respective
results compared with the corresponding Finite Difference Method solution presenting a mean-squared-errors of
order 10−3.
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1 Introduction

The Wave Equation is an important second order partial differential equation which describes several physical
phenomena such as mechanical, electromagnetic, acoustic and thermal waves and its solution is related to the
problem dimension, physical domain, boundary and initial conditions. Some practical applications of the Wave
Equation is in modeling the propagation of acoustic waves from ultrasound transducers, for example, in Simões et
al. [1], which may lead to new imaging techniques and non-invasive treatments.

Due to the impossibility of solving the Wave Equation analytically for an abritrary domain, several numerical
methods have been developed over the years with a vast literature such as the Finite Element Method (FEM) (Atalla
and Sgard [2], Benner and Heiland [3]), the Boundary Element Method (BEM) (Gimperlein and Meyer [4]) and
the Finite Difference Method (FDM) (LeVeque [5]). One main concern about such methods relies on the geometric
and time discretization that may lead to numerical instabilities or low accuracy and, although the computational
resources have largely increased during the past years, high frequency problems demand a finer mesh with element
size as small as one twentieth of the considered wave length, causing a major issue due to limit quantity of memory.

A possible approach in determining the proper mesh refinement of a given problem is comparing the numer-
ical simulation with an adequate analytical solution, since it may present results for any given time instant with no
need for computing previous iterations. In this sense, Lima et al. [6] proposed an approximate analytical solution
for the wave equation for a Dirichlet Boundary Condition (DBC) considering a sine wave as the input function.
Although this solution can be used to implement a wide range of frequencies, it is still desirable to determine the
analytical response due to any periodic function, such as Gaussian train pulses that are used for ultrasound imaging,
rectangular or sawtooth functions, which are the main wave forms in many engineering systems.

This paper presents an analytical solution for the Wave Equation considering an arbitrary periodic input
function up(t), obtained by approximating up(t) by its Fourier series and superimposing the weighted sine and
cosine analytical solutions for each fundamental frequency. Results are presented for three different periodic
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functions: a rectangular pulse sequence; a sawtooth wave function; and a Gaussian train pulse, with an mean-
squared-error of order 10−3 when compared to FDM simulations.

2 Methodology

In this section, the equations for the analytical wave equation solution and the methodology for compose
a periodic signal solution are presented. The code was developed in Python 3.7 Anaconda distribution and the
Numpy and Scipy Application Programming Interfaces (APIs) were used for fast vector-matrix manipulations
(Lanardo [7]) and the Matplotlib for plotting the results (Johansson [8]).

2.1 One-dimensional Wave Equation Analytical Solution

The formulation for the approximated analytical solution for one-dimensional problem derived by Lima et
al. [6] is presented here. The solution is defined within a domain of size L (m) and a time range (0, tf ) (s). The
differential equation and the considered domain are given by Equation 1, where the subscript s emphasises that the
solution relates to a sine wave DBC:

∂2us
∂t2

= c2
∂2us
∂x2

, t > 0, x ∈ [0, L] (1)

where c (m/s) is the medium plane wave velocity. The initial conditions for this problem are given by:

us(x, 0) = 0 (2)

∂us(x, 0)

∂t
= 0 (3)

The DBC is given by Equations 4 and 5.

us(x = 0, t) = 0 (4)

us(x = L, t) = sin(ωt), (5)

where ω is the input angular frequency in rad/s. The approximate weak solution to this problem is given by
Equation 6 where Np is the number of approximation terms:

us(x, t) ≈
x

L
sin(ωt) +

Np∑
n=1

sin(
nπt

L
)[Cnsin(

cnπt

L
) +Bn] (6)

with the parameters Cn and bn given by Equations 7 and 8 and the function Bn(t) given by Equation 9.

Cn = −ωbn
cnπ

(7)

bn = (−1)n+1 2L

nπ
(8)

Bn = K2sin(
cnπt

L
) +

Lω2sin(ωt)bn
(cnπ)2 − L2ω2

(9)

Equation 10 presents the parameter K2:

K2 = − L2ω3bn
(cnπ)3 − cnπL2ω2

(10)
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2.2 Periodic Signal Approximated Solution

It must be noted that, since the Wave Equation and the DBC are linear operations, the superposition principle
is valid, thus, it is possible to approximate any periodic function up(t) using Fourier series as follows (Kreyszig
[9]):

ũp(t) ≈ a0 +

M∑
n=1

[ancos(βnt) + bnsin(βnt)] (11)

βn = 2πnf (12)

where the variable M is the number of approximation terms.
As can be observed in Equation 11, the analytical solution for a cosine term, uc(t), is needed in order to

properly approximate the function up(t) and this can be achieved by shifting the time variable by π/2, resulting in
Equation 13.

uc(t) = us(t+ π/2) (13)

The offset term a0 and the cosine and sine coefficients, an and bn, can be evaluated numerically using, for
example, Gaussian quadrature.

In order to illustrate the proposed model, three different functions are presented: (i) a rectangular pulse
(Equation 14); (ii) sawtooth wave (Equation 15); (iii) a Gaussian pulse (Equation 16) with σ = 10 × 10−3 and
µ = 50× 10−3 and all three models have a period of T = 0.15 (s).

r(t) =


−1, if t < 0,

0, if t = 0,

1, if t > 0

(14)

h(t) = t, −0.15 ≤ t ≤ 0.15 (15)

g(t) = e−(t−µ)2/σ2

(16)

In order to answer the question ”How and how much the approximation does impact the domain up(t) re-
sponse?”, three different values of M (Equation 11) are considered: M = 10, 20, 40 and the mean-squared-error
given by Equation 17 is evaluated for the approximated input functions as well.

εRMS =

√√√√ 1

K

K∑
α=1

(uα − ũ(tα))2 (17)

where uα is the FDM-TD solution, ũ(tα) is the analytical solution evaluated at tα and K is the number of time
samples used.

3 Results

Qualitative (graphical results) and quantitative comparisons (εRMS) are presented with respect to the FDM-
TD implementation as described in Igel [10]. The FDM-TD parameters ∆t and ∆x were chosen such that the
εRMS between two consecutive simulations was less than 10−9 and the same values were adopted for the analytical
simulations as well. The geometric domain, time window and plane wave velocity are as follows:
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• Lx = 2.1 (m), ∆x = 21.0× 10−3 (m)
• tf = 2.5 (s), ∆t = 20.0× 10−3 (s)
• c = 10.0 (m/s)

The number of approximation terms for Equation 6 is Np = 20 and set fixed for all the simulations. This
value was chosen so that the εRMS between the analytical response for us(x; t) and the FDM-TD was lower than
10−6. In order to perform a fair error evaluation, the approximated input function was considered as DBC for
FDM-TD.

3.1 Rectangular Pulse

Figure 1 presents the function r(t) along its approximations and Table 1 the respective εRMS values.

Figure 1. Comparison between different number of approximation terms for a rectangular pulse function

Table 1. εRMS for rectangular pulse approximation by Fourier series

Fourier terms εRMS

10 40.396× 10−3

20 20.253× 10−3

40 10.180× 10−3

Qualitative and quantitative results are presented in Figure 2 and Table 2.

Figure 2. Qualitative result for rectangular wave considering M = 40 and evaluated at x = Lx/2
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Table 2. Quantitative results for rectangular wave evaluated at x = Lx/2

Fourier terms εRMS

10 48.819× 10−3

20 47.655× 10−3

40 46.158× 10−3

3.2 Sawtooth Wave

Figure 3 presents the function h(t) along its approximations and Table 3 the respective εRMS values.

Figure 3. Comparison between different number of approximation terms for a sawtooth wave

Table 3. εRMS for sawtooth wave approximation by Fourier series

Fourier terms εRMS

10 119.880× 10−6

20 58.443× 10−6

40 28.859× 10−6

Qualitative and quantitative results are presented in Figure 4 and Table 4.

Figure 4. Qualitative result for sawtooth wave considering M = 40 and evaluated at x = Lx/2
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Table 4. Quantitative results for sawtooth wave evaluated at x = Lx/2

Fourier terms εRMS

10 2.985× 10−3

20 3.172× 10−3

40 3.090× 10−3

3.3 Gaussian Pulse

Figure 5 presents the function g(t) along its approximations and Table 5 the respective εRMS values.

Figure 5. Comparison between different number of approximation terms for a Gaussian pulse

Table 5. εRMS for Gaussian pulse approximation by Fourier series

Fourier terms εRMS

10 8.046× 10−6

20 8.892× 10−9

40 4.700× 10−9

Qualitative and quantitative results are presented in Figure 6 and Table 6.

Figure 6. Qualitative result for Gaussian pulse considering M = 40 and evaluated at x = Lx/2
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Table 6. Quantitative results for Gaussian pulse evaluated at x = Lx/2

Fourier terms εRMS

10 15.002× 10−3

20 15.001× 10−3

40 14.960× 10−3

4 Discussions

As can be observed in Tables 2, 4 and 6 the εRMS for all simulated wave forms are of order 10−3. The
approximation accuracy for up(t) (Tables 1, 3 and 5) did not present an expressive influence over the domain
response. Figures 2, 4 and 6 show that the analytical response properly represents the response of a periodic signal
input function.

5 Conclusions

This paper presented an approximated analytical solution for the Wave Equation considering an arbitrary
periodic function as a Dirichlet Boundary Condition. The solution is based on the decomposition of the input wave
form into its Fourier series and presented promising results, since it is possible to evaluate the Wave Equation
solution for any given pair (x, t)i without computing previous values and independent of the geometric and time
domain refinement, which is a major issue in numerical methods. The next step of this work is to develop the
same model for the Neumann Boundary Condition (NBC) and compose more complex models, for example,
implementing the Robin Boundary Condition, which is the linear combination of DBC and NBC.
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