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Abstract. In the present work, a numerical simulation is performed to obtain the soil influence on the dynamic 

response of structures under cyclic loading. The spatial discretization of the soil and the structure is carried out 

here by employing hexahedral isoparametric elements with reduced integration and an efficient technique is 

employed for controlling the so-called hourglass modes. The load transfer between the soil and the structure is 

performed by a three-dimensional contact algorithm based on the penalty method formulation, where small 

interpenetrations can occur between the deformable bodies in contact. A corotational approach at element level 

is used to deal with physically and geometrically nonlinear analysis, where the physical nonlinearity is due to the 

elastoplastic behavior of the materials employed. Dynamic equilibrium equation is solved using the Newmark’s 

method and the Generalized-α method. Numerical examples are performed and compared with predictions 

obtained by the software ANSYS in order to verify the present algorithm. 
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1  Introduction 

The soil-structure interaction corresponds to the load transfer between foundation and soil through the 

contact between the two media, performing a fundamental role in the  overall structure response. Studies 

presented by Chopra and Gutierrez [1] and Bielak [2] have already demonstrated that the dynamic response of 

structures resting on flexible soil shows a very different behavior when compared to the same structure resting 

on a rigid base. According to Novak and Hifnawi [3] and Menglin et al. [4], the main reason for this difference is 

that part of the vibrational energy of the structure on flexible soil is dissipated by the propagation of elastic 

waves in soil and by hysteretic losses in soil. More information on soil-structure models may be found in Dutta 

and Roy [5], while a review of soil-structure interaction is show in Kausel [6]. 

Note that three-dimensional dynamic analysis of soil-structure interaction based on the Finite Element 

Method (FEM) requires a high computational cost due to the inherent nonlinear nature of contact problems. An 

alternative to improve computational efficiency is the use of finite elements with reduced integration instead of 

finite elements with full quadrature. In this way, Hu and Nagy [7] presented a formulation for hexahedral 

elements with one-point quadrature that was later extended by Duarte Filho and Awruch [8] to geometrically 

nonlinear static and dynamic problems. Braun and Awruch [9] extended that formulation to dynamic problems in 

the nonlinear range employing the generalized-α method. Hexahedral elements with one-point quadrature in 

elastoplastic problems were studied by Schmidt [10], who adopted the optimized parameter proposed by Reese 

[11] in the element stability matrix. A similar formulation was later used by Braun and Awruch [12,13] in order 

to simulate the mechanical behavior of soils using the Modified Cam-Clay model. 

Among most of the existing formulations to analyze contact problems numerically, the penalty and 

Lagrange multiplier methods are the most popular. In the penalty method, small interpenetrations are allowed 

between the elements in contact, where a penalty parameter is used to satisfy approximately the impenetrability 

restriction for bodies in contact. A finite element treatment for large deformation contact problems between 
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deformable bodies was presented by Laursen and Simo [14], where a convected coordinate system was settled in 

order to obtain a friction law with frame indifference. Chen et al. [15] proposed a formulation similar to Laursen 

and Simo [14] that evaluates the sliding term in the reference configuration in order to overcome the limitations 

found in the cases where the sliding extends over the boundary of adjacent elements, considering that the 

corresponding convected coordinate systems are locally defined and, therefore, discontinuous. More information 

on the correct numerical treatment of contact problems may be found in Wrigger [16] and Laursen [17]. 

Therefore, hexahedral elements with reduced integration and an efficient stabilization technique are used in 

this work to observe the behavior of a structure under cyclic loading resting on a soil layer. The load transfer 

between soil and structure is carried out using a three-dimensional contact formulation based on the penalty 

method. Physically and geometrically nonlinear analyses are performed using a corotational formulation. The 

finite element software ANSYS is employed to verify the present algorithm.  

2  Finite element model 

2.1 The principle of virtual work 

The principle of virtual work referred to a generic element e, with domain Ωe, may be expressed as (see 

Belytschko et al. [18]): 

 
e e e e e

 dΩ  dΩ  dΩ  dΩ +  dΓ ,+ + =∫ ∫ ∫ ∫ ∫ɺɺ ɺ

e e e e e

T T T T T

Ω Ω Ω Ω Γ
δ ρ δ χ δ δ δu u u u u b u tσε   (1) 

where ρ is the element’s specific mass; χ is the damping coefficient; δu is the vector containing the virtual 

displacements; u , ɺu  and ɺɺu  correspond to displacement, velocity and acceleration vectors, respectively; σ is the 

vector with element stress tensor components; δε is a vector with components of the virtual strain tensor due to 

δu; b is the body force vector and t is the prescribed traction vector applied on Γe. 

Spatial coordinates, displacements, velocities and accelerations are approximated by the nodal values and 

the shape functions N of the eight-node hexahedral finite element. In the FEM context, Eq. (1) leads to the well-

known dynamic equilibrium equation expressed in matrix format at element level: 

 + ,( ) ( ) ( ) ( ) ( ) ( ) ( )+ =ɺɺ ɺe e e e e e eM U D U K U P   (2) 

where M, D and K are the mass, damping and stiffness matrices, respectively; P is the external load vector and  

B  is the gradient matrix obtained from the strain-displacement relation = BUε . 

2.2 Reduced integration 

In the present work, two underintegration techniques for the eight-node hexahedral finite element are 

employed in order to suppress shear and volumetric locking effects. The first technique utilizes uniform reduced 

integration, where one-point quadrature is considered for both the deviatoric and volumetric parts of the strain 

tensor. However, in this case, the so-called hourglass modes may occur and some numerical procedures are 

necessary to stabilize the element formulation (see Duarte Filho and Awruch [8] for further information). The 

second technique is the B-bar method proposed by Hughes [19], where only the volumetric part of the strain 

tensor is underintegrated to avoid volumetric locking. 

2.3 Nonlinear analysis with the corotational reference system 

A corotational approach is employed here to analyze nonlinear problems. Theoretically, one can 

decompose the motion of a continuous medium into a rigid body motion followed by a pure deformation portion. 

Assuming that the finite element discretization is fine enough, the mentioned decomposition at element level can 

be performed and the pure deformation will be a small amount with respect to the element dimensions. 

Therefore, the small strain hypothesis can be considered properly. In order to maintain objectivity of the stress 

updates in the corotational system, stress rate measures are performed in this work using the Truesdell rate 

tensor. More details on the corotational reference system may be found in Braun and Awruch [9]. 
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In geometrically nonlinear problems, the equilibrium must be iteratively obtained using the incremental 

approach, where the stiffness matrix and the internal force vector are considered as functions of the current 

element configuration. In the present work, the Newton-Raphson method is employed and the iterative process 

continues until the equilibrium is obtained, considering a given tolerance criterion. 

For geometrically nonlinear dynamic analysis, the equilibrium equation may be described, in an 

incremental form, as Mondkar and Powell [20]: 

 ,int- ( )+
 + + = + +  

ɺɺ ɺ ɺɺ ɺ
t t t t∆∆ ∆ ∆M U D U K U P f U MU DU   (3) 

where M, D and K are the mass, damping and stiffness matrices, respectively; Δ ɺɺU , Δ ɺU  and ΔU  are, 

respectively, vectors containing incremental values of acceleration, velocity and displacement; Kt is the tangent 

stiffness matrix at time t and t +ΔtP  is the load vector at time t+Δt. Note that inertial and dumping forces 

vanishes for static analysis and the previous equation is simplified. 

In the present work, the Newmark’s method and the Generalized-α method are applied in the previous 

equation for time integration (see Duarte Filho and Awruch [8] and Braun and Awruch [9] for further 

information). 

As with the geometric nonlinear analysis, a corotational system is also used at element level for the 

integration of elastoplastic constitutive equations. The numerical integration scheme for updating stress states 

adopted in the present study is based on the algorithm presented by Owen and Hinton [21]. 

3  Contact formulation 

3.1 Contact kinematics 

Consider two bodies (α = 1,2) about to get in touch, where 1x  is the vector containing the coordinates of 

the orthogonal projection on the master surface of the slave node with coordinates 2x . 

The non-penetrability condition, using the closest point projection method, is defined as: 

 2 1 1 ,( ) 0= − ⋅ ≥
N
g x x n   (4) 

where the outward unit normal vector 1n  is obtained using the cross product between the tangent vectors 1
1a  and  

1
2a . The tangent vectors are defined in a local convective coordinate system using parametric coordinates βξ , i.e. 
1 1

, ( )= β
β βa x ξ  (β = 1,2). 

The first step in the calculation of normal gap between bodies is called “global search” and consists of 

finding which target elements are candidates to get in touch with the slave node. After that, a “local search” is 

carried out to evaluate the slave node projection on the target surface ( 1x ) using an iterative process. If the 

contact is not detected, a new search is performed for other contact candidates. 

In the tangential direction two cases are considered: stick and sliding. In the stick case, the slave node is not 

allowed to move in a tangential direction on the master surface and, therefore, the convective coordinates βξ  do 

not change during motion, while in the sliding case the slave node is allowed to move in a tangential direction on 

the contact surface (see Wriggers [16] and Laursen [17] for more details). 

3.2 Contact contribution to the weak form 

The penalty method is employed here for the treatment of contact problems, where terms are added to the 

traditional virtual work principle, Eq. (1), which correspond to the virtual work done by the contact tractions t 

related to the virtual displacement field δg on the contact boundary Γc (see Wriggers [16]): 

e e e e e
 dΩ  dΩ  dΩ  dΩ +  dΓ  dΓ .

e e e e e c

T T T T T T
c

Ω Ω Ω Ω Γ Γ
δ ρ δ χ δ δ δ δ+ + = +∫ ∫ ∫ ∫ ∫ ∫u u u u u b u t g tσɺɺ ɺ ε  (5) 

The previous system of nonlinear equations is solved here using the Newton-Raphson method, where 

linearization procedures must be carried out considering an incremental-iterative approach. In this case, a contact 

stiffness matrix is obtained. A detailed description on linearization of the contact virtual work may be found in 
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Wriggers [16] and Laursen [17]. 

4  Numerical example 

The present example seeks to evaluate the interaction between a shallow foundation resting on a three-

dimensional soil layer where the structure is under a cyclic load with geometrical characteristics shown in Fig. 

1a. 

Due to symmetry, only half of the problem is modeled with 1948 8-node hexahedral elements and 2561 

nodes (Fig. 1b). A rough frictional contact between the soil-structure interface was assumed and, therefore, the 

interface elements can open a gap but no sliding is allowed. The normal and tangential penalty parameter 

employed here are equal to 4.0 x 103 kN/m. 

The soil was modeled with Drucker-Prager yield criterion assuming coincidence at the outer edges with the 

Mohr-Coulomb surface, while the structure is considered as an elastic material (Table 1). It is possible to notice 

that the Young’s modulus for the soil is a function of the initial confining pressure (σ3 in kN/m²) which is 

evaluated at the center of the finite element using the soil specific weight equal to 16 kN/m². 

            

Figure 1. (a) Geometrical characteristics, (b) initial mesh configuration and (c) load description 

Table 1. Physical parameters adopted for the soil-structure interaction problem 

Soil 

Young’s modulus – E 40000 x (σ3/100)0.86 kN/m² 

Poisson’s ratio – ν 0.33 

Angle of friction – ϕ 42° 

Cohesion – c 1.2 kN/m² 

Specific mass - ρ 1.631 x 10³ kg/m³ 

Structure 

Young’s modulus – E 30 x 106 kN/m² 

Poisson’s ratio – ν 0.20 

Specific mass - ρ 2.548 x 10³ kg/m³ 

Nodes located on the base of the computational domain are fixed in all directions while the lateral walls are 

constrained against movement only in the horizontal plane, just as the structure nodes that are on the symmetry 

plane. In the static analysis, a compressive axial load of 160 kN and a horizontal load of 2 kN are applied at the 

column free end with 200 load steps and a compressive axial load of 7.6 kN is fully applied at the beginning of 

the simulation to reproduce the structure self weight. The dynamic analysis is performed during 10 s with Δt = 

5.0 x 10-3 s, where the axial load description is shown in Fig. 1c and the horizontal load is defined as a sinusoidal 

function with the same amplitude defined in the static analysis, i.e.: FH = 2.0sin(2πt) kN. 

Two points are used to measure the displacements: point A, corresponding to the point where the loads are 

applied and point B, which corresponds to a point on the soil-structure interface and located at a central point 

(a) (b) 

(c) 
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underneath the footing, in the symmetry axis. 

Results computed here are compared with those obtained using the finite element commercial software 

ANSYS. The soil was modeled using SOLID65 elements, which support the classic Drucker-Prager model, and 

the structure was modeled using SOLID185 elements. Both elements are defined by eight nodes having three 

degrees of freedom at each node. 

In the static analysis, the vertical and horizontal displacements observed at point A were, respectively, -

5.30 cm and 7.82 cm for the element with one-point quadrature, -5.02 cm and 5.60 cm for the element with B-

bar formulation and -4.62 cm and 3.72 cm for the ANSYS results. It is possible to notice that values obtained for 

the element with one-point quadrature were larger than the other results, once the entire element loses stiffness 

when the yield stress is reached. 

Load-displacements curves evaluated at point B are plotted in Figs. 2 and 3, while the horizontal 

displacements evaluated at point A are shown in Fig. 4. It is important to mention that ANSYS did not converge 

using the Newmark’s method and it was necessary to use the Generalized HHT-α method, where a numerical 

dissipation is introduced, similar to the Generalized-α method adopted in the present algorithm. 

 

Figure 2. Horizontal displacement response at point B for the soil-structure problem 

 

Figure 3. Vertical displacement response at point B for the soil-structure problem 

It is observed in Figs. 2, 3 and 4 that the Newmark’s method was unable to complete the analysis and, 

therefore, it was necessary to employ the Generalized-α method to stabilize the time integration process with rα = 

0.8 for the analysis with B-bar formulation and rα = 0.7 for the analysis with one-point quadrature. It is observed 

that results obtained with ANSYS were similar to those measured in the present work with a small divergence 

after 5 s. One can see that the ANSYS formulation showed a large amount of numerical dissipation, which 
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strongly dissipates vertical displacement oscillations, especially after t = 4 s. 

 

Figure 4. Horizontal displacement response at point A for the soil-structure problem 

In order to evaluate the structure response resting on a rigid base, two other models were performed: a 

model with structure in contact with a rigid surface and a model where structure base nodes fixed in all 

directions. Dynamic analysis is performed using the B-bar formulation and the Newmark’s method. The 

displacements measured at point A for both models are presented in Fig. 5, where it is possible to notice that all 

models are in agreement with each other. Note that the horizontal displacements values obtained in these models 

were very small compared to those where the soil was simulated. The maximum values obtained for the structure 

resting on a rigid base were at least 200 times smaller than those obtained with ANSYS’ soil-structure model. 

 

Figure 5. Displacement response at point A for the structure resting on a rigid base 

5  Conclusions 

A numerical example of a shallow foundation resting on a three-dimensional soil layer where the structure 

is under a cyclic load was performed in the present work in order to obtain the soil influence on the dynamic 

response. Spatial discretization of the bodies in contact was carried out by employing the Finite Element Method 

(FEM) and eight-node hexahedral isoparametric elements with two underintegration methods. It was observed 

that the Newmark’s method was not able to complete the non-linear elastodynamic analysis and, therefore, it was 

necessary to employ the Generalized-α method with appropriate spectral radius. Results obtained with both 

underintegration methods were very similar between each other and despite ANSYS solution showed a large 

amount of numerical dissipation, in general, numerical results presented a good agreement with a few 

differences. It was also shown that the dynamic response of the structure resting on a flexible soil showed a very 
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different behavior when compared to the same structure resting on a rigid base.  Although results concerning the 

numerical efficiency of element formulation were not showed in this work, simulations indicated that using 

hexahedral elements with one-point quadrature led to a shorter processing time, which is a very important feature 

for nonlinear problems such as contact applications. The present algorithm is still being implemented and other 

numerical examples will be used to fully validate it. 
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