
Flutter analysis of a tip-mass-wing using Rayleigh-Ritz by hierarchical
polynomials

Thais Cardoso Franco1, Flávio Luiz Cardoso Ribeiro1

1Aeronautics Institute of Technology (ITA)
Praça Marechal Eduardo Gomes, 50 - São José dos Campos, Brazil
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Abstract. In an attempt to reduce fuel consumption and noise, aircraft designers try to minimize structural weight
and maximize the wing aspect ratio. Both constraints lead to an increase in structural flexibility. Consequently,
aeroelastic effects, as flutter, must be researched extensively from conceptual design stages. In order to avoid
flutter, several studies have been conducted seeking to use active control techniques using piezoelectric materials.
This paper proposes to analyze the vibration frequencies and flutter velocities of a wing model described as a
clamped-free beam with bending and torsion movements with mass at its tip. A second model, the Goland wing,
whose flutter speeds are widely reported in the literature, is used to validate the results of flutter velocity obtained
for the propose model. To compare the accuracy of the results obtained and the computational cost, approximate
methods are used to obtain the discrete structural equations: Rayleigh-Ritz with hierarchical standard and Bardell
polynomials. The complete aeroelastic model is developed applying the Peters aerodynamic model, which approx-
imates the effects of the unsteady incompressible flow using a state-space approximation. Thanks to the use of
hierarchical polynomials, a low-order and computationally cheap numerical model is obtained. This model can be
used for optimization in conceptual design stages, as well for feedback control design.
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1 Introduction

The reduction in fuel consumption, and the consequent reduction in the emission of pollutants and operating
costs, can be achieved by optimizing the aircraft structure by reducing aerodynamic drag and its empty weight.
Both strategies lead to elongated and flexible wings, making flexible aircraft objects of study more and more
recurrent. Since aeroelastic phenomena can lead to structural failure, their effects have a major influence on
the design and flight performance of new aircraft. The most studied effect of induced vibration is flutter. This
instability involves two or more vibration modes and results from the unfavorable coupling of aerodynamic, inertial
and elastic forces, which means that the structure can extract energy from the air flow. Among the difficulties in
modeling the flutter phenomenon are the unsteady nature of the aerodynamic forces and the moments generated
when the aircraft oscillates as described by Wright and Cooper [1]. The presence of flexible effects influences the
dynamic stability modes of the rigid aircraft and therefore affects flight dynamics. The flutter can take various
forms involving different pairs of interaction modes, the most studied of which are: bending and twisting of the
wing, twisting of the wing and the control surface, coupling of the wing and motor modes.

During flutter, aerodynamic forces drive natural frequencies in their modes, especially the first two, usually
associated with twisting and bending, to converge close to the critical flutter speed, detailing in Dowell et al. [2],
Hodges and Pierce [3]. Above this speed, the amplitude of oscillations increases with time, until the deflections are
large enough to cause a structural failure or create a permanent cycle. Below this speed, oscillations are attenuated;
while above it, the energy from the fluid flow is transferred to the structure, generating increasing oscillations due
to the displacement of one of the poles of the system to the unstable region, making it negatively damped.

In order to avoid flutter and increase the flight envelope of aircraft, several studies have been carried out
seeking to use active control techniques. The use of piezoelectric materials as actuators is a possibility. In this
context, this work aims to develop a semi-analytical tool that can be used for aeroelastic modeling of different
structures with coupled piezoelectric material. Thanks to the low computational cost, the tool can be used for
control system design, simulation, parametric studies and project optimization.
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The objective of this work is to obtain a semi-analytical structural model that describes the aeroelastic prob-
lem, considering a bending and twisting beam, which is coupled with a piezoelectric element, which will later
be used for structural control. To determine the behavior of the treated aeroelastic system, the unsteady aerody-
namic model is used via the Peters method. To perform the discretization of the wing model, the approximate
Rayleigh-Ritz methods via Bardell and Standard hierarchical polynomials are implemented from routines created
in the MATLAB R© environment. The use of global polynomials in the discretization allows to obtain models of
reduced order in comparison with the Finite Elements, thus decreasing the computational cost.

Finally, it is important to note that this paper is a continuation of works already done by the authors in Franco
[4], Franco and Cardoso-Ribeiro [5] of active control using piezoelectric elements. The novelty of this paper with
respect to Franco and Cardoso-Ribeiro [5] is that we use Peter’s method to represent unsteady aerodynamics.

This paper is divided as follows. Firstly, a description of the experimental device that is considered in this
paper is presented in Section 2. Then, the unsteady aerodynamic model is shown in Section 3. The aeroelastic
equations are derived in Section 4 and the approximation functions used are described in Section 5. Numerical
results and a discussion is presented in Section 6. Finally, conclusions and further work are presented in Section 7.

2 Structure Materials and Dimensions

An experimental device depicted in Fig. 1 is considered, which consists of a flexible beam with a tip mass
and a piezoelectric material, used to excite and to actively control the coupled system, reducing the vibrations. The
values of properties for the beam and for the piezoelectric element can be found in Table 1. The simulations consist
of a flight at sea level (ρf = 1.225 kg/m3). The parameters p1, p2, p3 and p4 are such that it is possible to position
the piezoelectric element centered on the beam along the chord (z direction) and the wingspan (x direction).

Figure 1. Schematic drawing of the beam with a piezoelectric element attached.

Table 1. Parameters

Wing Parameters Value Unity Piezo Parameters Value Unity

Length L 0.35 m Length Lp 0.14 m

Thickness t 0.000813 m Thickness tp 0.0001 m

Width c = 2b 0.04 m Width cp 0.035 m

Density ρ 2697 kg/m3 Density ρp 2970 kg/m3

Young modulus E 73.1 GPa Young modulus Ep 67 GPa

Shear modulus G 28 GPa Shear modulus Gp 28 GPa

Elastic axis location a m 0

Coupled mass m kg 0.03458

Offset d mm 5

Coupled mass inertia Im kg.m2 1.858× 10−5

3 Peters Aerodynamic Model

Although Theodorsen’s theory is an excellent choice in classical flutter analysis via the frequency domain,
for the design of most controllers it is necessary to represent the actual aerodynamic loads in terms of differential
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equations in the time domain and thus obtain a model of state space. In Peters method, the unsteady aerodynamic
model is approximated in a finite dimensional state-space representation.

This model approximates the effects of unsteady air loads that form 2D incompressible flows using terms
of induced flows to explain the effects of vortices on the flow near the airfoil. The wind speed near the airfoil is
described by the free flow speed plus an additional local induced flow component as presented by Peters et al. [6].
In this theory the lift (La) and the pitch moment (Ma) are represented by:

La = πρfb
2
(
ḧ− baθ̈ + V∞θ̇

)
+ 2πρfbV∞

[
ḣ+ b

(1
2
− a
)
θ̇ + V∞θ − ~λ0

]
(1)

Ma = abL+ 2πρfb
2

[
1

2
V∞ḣ−

1

2
abV∞θ̇ −

1

2
V∞λ0 −

1

16
b2θ̈

]
(2)

Where, a is the dimensionless elastic axis location, V∞ the free flow speed, ḣ and ḧ are the first and the second
time derivatives of the deflection h of the structure in the domain of space and time and θ̇ and θ̈ are the first and
the second time derivatives of the elastic torsion deflection θ in the domain of space and time.

The lift (eq. 1) and moment (eq. 2) can be rewritten in a matricial form as:−La
Ma

 = [A]

ḧ
θ̈

+ [B]

ḣ
θ̇

+ [C]

h
θ

+ [F ] ~λ0 (3)

Where,

[A] =

−Lḧ −Lθ̈
Mḧ Mθ̈

 ; [B] =

−Lḣ −Lθ̇
Mḣ Mθ̇

 ; [C] =

−Lh −Lθ
Mh Mθ

 ; [F ] =

−Lλ0
Mλ0

 (4)

With:
Lh = 0; Lḣ = 2πρfbV∞; Lḧ = πρfb

2 (5)

Lθ = 2πρfbV
2
∞; Lθ̇ = πρfb

2V∞ + 2πρfb
2V∞

(1
2
− a
)
; Lθ̈ = −πρfb

3a (6)

Lλ0 = −2πρfbV∞; Mλ0 = −2πρfb2aV∞ − πρfb2V∞ (7)

Mh = 0; Mḣ = 2πρfb
2aV∞ + πρfb

2V∞; Mḧ = πρfb
3a (8)

Mθ = 2πρfb
2aV 2
∞; Mθ̇ = πρfb

3aV∞+2πρfb
3aV∞

(1
2
−a
)
−πρfb3aV∞; Mθ̈ = −πρfb

4a2−1

8
πρfb

4 (9)

Equations 1 and 2 show that the lift contains circulatory and non-circulatory terms. The induced flow ~λ0 is
expressed in terms of the airfoil movement, being approximated by a series of N states, given by:

~λ0(t) =
1

2

N∑
n=1

~bnλn(t) (10)

Since the coefficients of ~bn are determined by the method of least squares, and given by:

~bn =

 (−1)n−1 (N+n)!
(N−n)!

1
(n!)2 if n 6= N

(−1)n−1 if n = N
(11)

Equation 10 can be rewritten as:
~λ0 = [b̃]~λ (12)

Where ~λ is a vector with a dimension of the number of states N . And, [b̃] is a matrix resulting from the Kronecker
product tensor with a dimension of the number of elements used in the discretization, so that:

[b̃] =
1

2
[I]⊗ ~bn (13)

Given a column vector ~λ containing the values of λn, it is possible to write the set of N first-order ordinary
differential equations for λn as:

[Ã]~̇λ+
V∞
b
~λ = ~cn

[
ḧ+ V∞θ̇ + b

(
1

2
− a
)
θ̈

]
(14)
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Where the matrix [Ã] and the vector ~cn are composed of constants determined by the number of induced flow
states, N . The matrix [Ã] is given by:

[Ã] = [Dnm] + ~dn ~bn
T
+ ~cn ~dn

T
+

1

2
~cn ~bn

T
(15)

The matrix [Dnm] and the vectors ~cn and ~dn can be obtained using:

[Dnm] =


1
2n if n = m+ 1

− 1
2n if n = m− 1

0 if n 6= m± 1

~dn =

 1
2 if n = 1

0 if n 6= 1
~cn =

2

n
(16)

In this way, the eq. 14 can be rewritten as:

~̇λ = [a1]~λ+ ~a2ḧ+ ~a3θ̇ + ~a4θ̈ (17)

Where,

[a1] = [Ã]−1
(
−V∞
b

)
; ~a2 = [Ã]−1 ~cn; ~a3 = [Ã]−1 ~cnV∞; ~a4 = [Ã]−1 ~cnb

(
1

2
− a
)

(18)

4 Aeroelastic Equations

In this section, the equations of motion are derived. Firstly, the kinetic and potential energy for the beam in
torsion and bending is presented. Then, non-conservative forces are introduced in the expression of external work
due to damping and aerodynamics. Finally, the equations are obtained from the Hamilton Principle.

The total kinetic energy of the system can be described as a function of elevation (h(x, t)) and pitch (θ(x, t))
in the space and time domain along the length:

Vhθ =
1

2

∫ L

0

ḣ(x, t)
θ̇(x, t)

T ρct+Cρpcptp Ssc

Ssc ρI+CρpIp

ḣ(x, t)
θ̇(x, t)

 dx+
1

2

ḣ(x, t)
θ̇(x, t)

T m md

md Im

ḣ(x, t)
θ̇(x, t)

 ∣∣∣∣∣
L

(19)

Where, Ssc is static mass moment, Ssc 6= 0 in case the elastic axis is far from the center of gravity and C is a
localizing function that describes the position of the piezoelectric patches:

C =

 0 if x ≤ p1 or x ≥ p2
1 if p1 < x < p2

(20)

And the total potential energy of the system can be described as:

Uhθ =
1

2

∫ L

0

h′′(x, t)
θ′′(x, t)

T EI+CEpIp 0

0 0

h′′(x, t)
θ′′(x, t)

 dx+
1

2

∫ L

0

h′(x, t)
θ′(x, t)

T 0 0

0 GJ+CGpJp

h′(x, t)
θ′(x, t)

 dx
(21)

So that I and Ip the moments of inertia of the beam and the piezoelectric element, respectively and GJ and GpJp
torsional beam and piezoelectric stiffness.

Since the damping occurs due to work related to non-conservative forces, it can be written in function of the
structural damping (ch) and structural damping of pitch (cθ):

Vd = −
∫ L

0

h(x, t)
θ(x, t)

T ch 0

0 cθ

ḣ(x, t)
θ̇(x, t)

dx (22)

And the work of non-conservative forces related to aerodynamics:

Wnc =

∫ L

0

h(x, t)
θ(x, t)

T ([A]
ḧ(x, t)
θ̈(x, t)

+ [B]

ḣ(x, t)
θ̇(x, t)

+ [C]

h(x, t)
θ(x, t)

+ [F ][b̃]~λ

)
dx (23)
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Where, the aerodynamic force varies as a function of x, and that it is calculated by the strip theory, i.e., a technique
to solve a three-dimensional problem using known two-dimensional solutions in which the support surface is
subdivided into strips arranged along the span. In other words, the flow along any section of the wing can be
considered as two-dimensional.

Using the modal superposition principle, h(x, t) and θ(x, t) can be expressed in terms of an enriched modal
basis composed of m modes of bending and n modes of torsion:h(x, t)

θ(x, t)

 =

 ~R(x) [0]1,m

[0]1,n ~S(x)

h(t)
θ(t)

 (24)

Where, ~R(x) is the decoupled bending modes vector and ~S(x) the vector of decoupled twisting modes. Replacing
the modal base (eq. 24) in the eq. 19 to 23:

Vhθ =
1

2

ḣ(t)
θ̇(t)

T [M]

ḣ(t)
θ̇(t)

 Uhθ =
1

2

h(t)
θ(t)

T [K]

h(t)
θ(t)

 Vd = −

h(t)
θ(t)

T [D]

ḣ(t)
θ̇(t)

 (25)

Wnc =

[h(t)]
[θ(t)]

T ([A]
[ḧ(t)]
[θ̈(t)]

+ [B]

[ḣ(t)]
[θ̇(t)]

+ [C]

[h(t)]
[θ(t)]

+ [F][b̃]~λ

)
(26)

So that [M] is the mass matrix, [K] global stiffness matrix, [D] structural damping matrix, [B] aerodynamic
stiffness matrix, [C] aerodynamic damping matrix, [A] the Peters matrix and [F] the induced flow matrix.

The aeroelastic model based on the Hamiltonian Principle and the aerodynamic strip theory can be described
as:

δ

∫ t

0

(Vhθ − Uhθ) dt+ δ

∫ t

0

Wnc dt+ δ

∫ t

0

Vd dt = 0 (27)

Replacing the previously obtained relations in eq. 27:

δ

∫ t

0

(
− ~qT [M]~̇q − ~qT [K]~q − ~qT [D]~̇q + ~qT [A]~̈q + ~qT [B]~̇q + ~qT [C]~q + ~qT [F][b̃]~λ

)
dt = ~0 (28)

Where,

~q =
[
h(t) θ(t)

]T
(29)

Solving the eq. 28:

− [M]~̈q − [K]~q − [D]~̇q + [A]~̈q + [B]~̇q + [C]~q + [F][b̃]~λ = ~0 (30)

From there, the relationship can be established:

[T1]
[
~̇q ~̈q ~̇λ

]T
= [T2]

[
~q ~̇q ~λ

]T
(31)

Finally, the representative matrix of the complete system is obtained: [Q] = [T1]
−1[T2]. In compact way:

~̇x− [Q]~x = ~0 (32)

The eigenvalues of [Q] can be used to study the stability of the aeroelastic system.

5 Aproximate Methods

For the analysis of vibration frequencies, flutter velocity and system behavior with piezoelectric control two
approximate methods are used from routines created in the MATLAB environment: Finite Element Method and
Rayleigh-Ritz with hierarchical standard and Bardell polynomials.

The Finite Element Method is used to determine the approximate solutions of bending and twisting frequen-
cies and modes of vibration of the structure studied from the boundary conditions and their differential equations.
In the process, the domain of the problem is divided into 50 elements of length (dx) and its accuracy is established.
The method is widely discussed in the literature by Reddy [7].
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The Rayleigh-Ritz with hierarchical Bardell polynomials porposed by Bardell [8] is a method in which the
shape functions to satisfy the essential boundary conditions are based on hierarchical polynomial functions, as the
recursive function defined as follows:

Ni =

j/2∑
r=0

(−1)r(2j − 2r − 7)!!

2rr!(j − 2r − 1)!

[
2x

L
− 1

](j−2r−1)
, j > 4 (33)

Ten terms were used in the simulations that will be replaced in ~R and ~S. The polynomials must have zero
value in the root of the beam due to the clamped edge and consequent of bending and zero rotation, it must be
assumed that the first two polynomials are neglected, since they have values different from 0 in the root.

Lastly, for the Rayleigh-Ritz with hierarchical standard polynomials, the following functions were simulated
with ten terms:

Ni =

[
x

L

]i+1

(34)

6 Results and Discussion

This section shows the results obtained by Finite Element Method and by Rayleigh-Ritz (RR) via Bardell and
standard hierarchical polynomials for the clamped beam with tip mass and coupled piezoelectric element treated
as the model of this study. The Fig. 2 shows the four first modes of vibration of the beam subjected to bending and
twisting, depending on their length.

Figure 2. Four first bending and twisting modes for the model.

The results for the first four modes of vibration related to bending and torsion are shown in Table 2. It is
important to note that, of the four modes, only the third is a contribution from torsion, the others are related to
bending. It can be seen that the methods inspired by Rayleigh-Ritz have very close values and that their results
converge to the frequencies obtained via Finite Elements, however with less computational cost.

Table 2. Vibration frequencies for the model subject to bending and torsion

Mode Finite Elements [Hz] RR Bardell [Hz] RR Standard [Hz]

1st bending mode 2.3548 2.3545 2.3545

2nd bending mode 25.664 25.313 25.361

1st twisting mode 27.242 27.289 27.539

3rd bending mode 80.640 80.699 80.722

As a validation of the code developed in MATLAB, a simulation was performed for Goland wing, whose
flutter speeds are easily found in the work of Haddadpour and Firouz-Abadi [9]. The flutter velocities for the
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two wing models using Peters’ unsteady aerodynamics using Rayleigh-Ritz methods with Bardell and Standard
hierarchical polynomials can be seen in Table 3. Checking the results obtained for the Goland wing and comparing
them with those found in the literature, it is concluded that the values obtained are close and the code developed can
be validated. It is also possible to verify through the results obtained for Goland’s wing that Peters’ aerodynamic
method is very accurate in comparison with the exact values found in the literature.

Finally, the results converge, with respect to the approach used for discretization (Finite Elements, Rayleigh-
Ritz with standard and Bardell hierarchical polynomials).

Table 3. Wing Flutter Frequencies and Speeds

Goland RR Bardell RR Standard Finite Elements Bibliography [9]

Frequency [Hz] 71.22 71.83 71.19 71

Velocity [m/s] 137.28 137.49 137.22 137.46

Model RR Bardell RR Standard Finite Elements Bibliography [9]

Frequency [Hz] 27.02 27.20 27.03 -

Velocity [m/s] 10.0 10.0 10.0 -

7 Conclusions

In this work, a Rayleigh-Ritz-inspired method with Bardell hierarchical polynomials was used, leading to
good accuracy and low computational cost. Together with this observation, we can conclude that Peters’ non-
stationary method presented good accuracy and the aeroelastic model was validated against literature results. The
final semi-analytic models obtained in this work are appropriate for control design, since they lead to low or-
der state-space models. Further work should explore the model obtained here for designing flutter suppression
controllers with the use of the piezoelectric element.
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