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Abstract. It is well known that thin-walled elastic rings and pipes are prone to buckling instabilities when under 

external pressure. A particularly interesting example is the buckling of a thin, elastic ring under hydrostatic 

pressure. The buckling load is strongly influenced by the follower force nature of the pressure and, if this effect 

is neglected, the prediction of the critical buckling load can be as much as 50% for very thin rings. This work 

studies, using a variational nonlinear formulation, the buckling and vibration characteristics of rings and pipes 

resting on an elastic Pasternak foundation. First the equation of motion of the pre-loaded ring is derived and the 

analytical solution of the eigenvalue problems are obtained. The parametric analysis shows the influence of the 

geometric and physical parameters on the critical load, natural frequencies and load-frequency nonlinear relation, 

considering the follower force effect of the hydrostatic pressure. 
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1  Introduction 

Rings and pipes have a wide range of applications in civil, mechanical and biomechanical engineering and in 

many applications they are surrounded by an elastic medium. This work studies, using a variational nonlinear 

formulation [1, 2], the buckling and vibration characteristics of rings and pipes resting on an elastic Pasternak 

foundation [3, 4]. For a long free pipe, the buckling equation can be derived using the Euler buckling theory, by 

modelling the pipe as a ring [2]. The stability and vibration analysis of rings and long cylindrical shells continues 

to be  an important research subject due to various technological applications with recent contributions including 

[5, 6, 7]. The parametric analysis shows the influence of the geometric and physical parameters on the critical 

load, natural frequencies and load-frequency nonlinear relation, considering the follower force effect of the 

hydrostatic pressure. 

2  Formulation 

Consider a circular ring of radius a, rectangular cross-section with base b and thickness h, under hydrostatic 

pressure of magnitude  , as illustrated in Figure 1, where   and   are the radial and circumferential coordinates.  

The ring material is isotropic, homogeneous, elastic and linear with Young modulus E and mass per unit volume 

. The total potential energy of a ring under hydrostatic pressure is given by [1]: 
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where   and   are respectively the area and moment of inertia of the cross section,   and   are the radial and 

circumferential displacements, respectively, and ( )        
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Figure 1. Ring under hydrostatic pressure: geometry and coordinate system 

The potential energy of the Pasternak foundation takes the form [3, 4]: 
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where the reaction of the foundation is determined by a radial spring constant    (the modulus of subgrade 

reaction in the Winkler foundation, which represents compressive soil resistance) in combination with a 

parameter   , which can account for the actual shearing effect of soils. 

The kinetic energy of the slender ring with mass density   considering rotatory inertia is given by  
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where the dot represents the partial derivative with respect to time (    ). 

The analytical solution of the buckling and vibration modes takes the form: 

       (  )          (  )   (4) 

where   is the circumferential wavenumber. 

Based on (4), the stiffness matrix,   , and the geometric matrix,   , are given respectively by: 
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while the mass matrix takes the form: 

       [       

         ]  (6) 

The characteristic equation |      |     of the stability eigenvalue problem leads to the following 

sequence of eigenvalues: 

  ̅  {[  (     )     ̅   ̅  
 ] (    )}                 (7) 

where the following nondimensional quantities are used:  ̅            ̅     
        ̅     

    . For a 

long pipe the stiffness is rewritten as          (    ) where   is the Poisson ratio [2]. 

 The characteristic equation |(      )     |     of the undamped free vibration eigenvalue 

problem leads to the following eigenvalues for the flexural natural frequencies of the loaded ring: 
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where     (   ) ,   ̅  √        in the nondimensional frequency and   is the frequency in rad/s 

corresponding to flexural mode. The higher second eigenvalue  ̅  corresponds to circumferential motions. 

3  Results 

Using the deduced nondimensional analytical expressions a detailed parametric analysis is now conducted 

to study the effect of the foundation on the critical load, natural frequencies and on the load-frequency relation. 

3.1 Critical load 

Figure 2(a) shows the variation of the critical loads as a function of the circumferential wavenumber   for 

selected values of the Winkler foundation stiffness parameter  ̅ . For  ̅   , the critical load corresponds to 

    with  ̅     [1, 2]. If the follower force effect of the hydrostatic pressure in not considered in Eq. (1)  ̅   

increases to 4.5. As  ̅  increases, the critical load and the number of circumferential waves associated with the 

critical load increases. Figure 2(b) shows the variation of the critical loads as a function of foundation stiffness 

 ̅ , where the variation of the critical wavenumber n with the foundation stiffness is clearly observed.  

  (a)         (b) 

Figure 2. Variation of the critical load (a) with the number of circumferential waves   for selected values of 

the foundation stiffness  ̅ ; (b) with the foundation stiffness  ̅  for selected values of  . 

Figure 3 illustrates the influence of the foundation stiffness parameter  ̅   on the critical load. As observed 

in Eq. (7), the load increases with  ̅  and   . 

Schmidt [8] discusses the different expressions and values of the critical pressure of slender rings as a 

function of the load modeling and shows that generally  ̅      with    varying between 0.701 and 5.6, 

illustrating the importance of the load description on the results. 
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Figure 3. Variation of the critical load with the foundation stiffness  ̅  for selected values of the Pasternak 

foundation stiffness parameter  ̅   and     

3.2 Natural Frequencies 

Figure 4 shows the variation of the nondimensional frequency parameter  ̅  with   for        and 

selected values of  ̅  considering or not the effect of rotatory inertia. The frequencies increase with   and  ̅ , 

with the fundamental frequency corresponding to    . The influence of  ̅  is particularly important for low 

values of  . The effect of rotatory inertial in negligible even for this value of radius-to-thickness ratio,    . 

  (a)         (b) 

 

Figure 4. Variation of  ̅  with   for        and selected values of  ̅  (a) disregarding the effect of rotatory 

inertia, (b) considering the effect of rotatory inertia 

Figure 5 illustrates the influence of the Winkler foundation parameter  ̅   on the four lowest natural 

frequencies, where in accordance with Figure 4, the flexural natural frequencies increases with  . Initially the 

influence of the foundation stiffness is very small but for  ̅      the natural frequencies increases steadly with 

 ̅ . The difference between the consecutive natural frequencies also increases. 
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  (a)         (b) 

Figure 5. Variation of the four lowest natural frequencies of the ring  ̅  as a function of  ̅  (a) disregarding the 

effect of rotatory inertia (b) considering the effect of rotatory inertia 

Figure 6 illustrates the influence of the Pasternak foundation parameters  ̅   and  ̅  on the lowest natural 

frequencies (   ). The fundamental frequency increases with  ̅  for a given value of  ̅ , being its influence 

particularly important for  ̅     . The influence of  ̅  decreases as  ̅  increases and disappears for large 

values of  ̅  (rigid foundation). 

  (a)          (b) 

Figure 6. Variation of the lowest natural frequencies of the ring (   ) as a function of  ̅  for selected values of 

 ̅  , (a) disregarding the effect of rotatory inertia (b) considering the effect of rotatory inertia. 

3.3 Load-frequency relation 

It is known that in structures liable to buckling the compressive stresses have a strong influence on the 

natural frequencies with the lowest natural frequency becoming zero at the critical load. Figure 7 shows the 

variation of the four lowest natural frequencies of the ring with the foundation stiffness  ̅      and        

with the applied pressure  ̅ . For the unloaded ring the frequencies increase with the circumferential 

wavenumber  , but, as  ̅ increases  there is a change in the sequence of vibration modes, and the lowest natural 

frequency becomes associated with    , since for the adopted value of  ̅  this is the number of waves of the 

critical mode.  
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  (a)          (b) 

Figure 7. Variation of the four lowest natural frequencies of the ring with the applied pressure  ̅ (a) disregarding 

the effect of rotatory inertia (b) considering the effect of rotatory inertia. stiffness  ̅      and       . 

Thus the sequence of vibration modes in loaded rings changes with the applied load and the foundation 

stiffness parameters. As a consequence, for certain parameter values there is a coincidence of natural frequencies 

leading to possible internal resonances. 

4  Conclusions 

 The variational formulation for the dynamic response of a ring or long cylindrical shell (pipe) under 

hydrostatic pressure resting on Pasternak foundation is presented in this study and closed-form solutions are 

derived for the critical load, natural frequencies and frequency-load relation. The results of a detailed parametric 

analysis show the influence of the applied load and of the two stiffness parameters of the Pasternak foundation 

on the buckling and vibration characteristics of the ring. The Pasternak foundation forms an attractive alternative 

to the Winkler foundation regarding the larger flexibility of the simple 2-parameter model.  
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