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Abstract. In this paper, we incorporate nonholonomic constraints to the contact integrator obtained from the Her-
glotz’ variational principle. This results in a geometric integrator which is suitable for nonconservative, nonholo-
nomic systems. We compare this integrator with the more traditional one obtained from the Lagrange-d’Alembert
principle. The comparison is performed using numerical simulations on both holonomic and nonholonomic cases.
For the holonomic case, in addition to the numerical simulations we present a recently developed backward error
analysis.
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1 Introduction

Geometric integrators are numerical methods compatible with the underlying geometry of mechanical sys-
tems. As a consequence, they have good conservation properties in long-time simulations [1]. Variational mechan-
ics allows systematic ways to get geometric integrators, by discretizing the relevant variational principle [2].

In this context, the case of conservative holonomically constrained systems is the best understood, namely:
the configuration space is a manifold Q, the dynamics is encoded in the Lagrangian L : TQ → R on the tangent
bundle of Q, the geometric framework symplectic geometry, and the equations of motion are given by Hamilton’s
principle of stationary action [3, 4]. Moreover, discretizing Hamilton’s principle one gets geometric integrators
which preserve the symplectic structure, and as a consequence, they display good conservation features for long-
time simulations [2].

For nonconservative holonomically constrained systems there is no such a unified geometric and variational
description. However, many interesting systems, such as those subject to Rayleigh dissipation, fall into the fol-
lowing framework: the configuration space is a manifold Q, the Lagrangian is a function L : TQ × R → R;L =
L(q, q̇, z), the geometric framework is contact geometry, and the equations of motion are derived from Herglotz’
variational principle [5–8]. Moreover, as it was shown in the recent work [9], the discretization of Herglotz’
principle yields geometric integrators preserving the contact structure.

The situation regarding constraints is more subtle. The most traditional way to approach nonholonomic
systems in a variational framework is based on Lagrange-d’Alembert (LA) principle, which provides the right
equations of motion, although it is not a fully variational formulation [10]. By discretizing the LA principle and
the constraints in a compatible way, in [11] the authors derived a geometric integrator which falls in the category of
nonholonomic integrators. By numerical experiments, these integrators are shown to have interesting conservation
properties. However, the fundamental reason why nonholonomic integrators in general display good behavior is
subtle [12].

Since the fundamental variational principle behind nonconservative systems is Herglotz’ principle, it is ex-
pected that an integrator for a nonconservative, nonholonomic system obtained by this principle should display
better performance than the one coming from LA principle. In a more recent work, the case of nonconservative,
nonholonomic systems was studied in the framework of Herglotz’ variational principle [5], lying the foundation
for a systematic approach in getting contact nonholonomic integrators.

In this work we bring together ideas from the aforementioned works in order to construct a geometric integra-
tor for a nonconservative nonholonomically constrained system, by discretizing its underlying Herglotz’ variational
principle and the nonholonomic constraints following the same criterion of compatibility considered in [11]. To
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compare the integrator obtained from Herglotz’ principle with the one obtained from the LA principle, we con-
sider two scenarios: for the case of holonomic systems we perform a backward error analysis, as well as numerical
simulations, taking the damped harmonic oscillator as benchmark. For the nonholonomic case, we perform a nu-
merical simulations taking the damped Foucault pendulum as benchmark. We note that a backward error analysis
for nonholonomically constrained systems is left for future work.

The structure of this article is as follows. In Section 2 we briefly review the variational principles of interest to
us, namely the Lagrange-d’Alembert principle and the Herglotz principle, as well as their their discretization, and
explain how we incorporate nonholonomic constraints to the discrete Herglotz principle. In Section 3 we present
the simulated mechanical systems and derive their respective Lagrangians to perform qualitative and quantitative
comparisons of the presented integrators. Finally, in Section 4 we give some general conclusions and point some
lines for future work.

2 Theoretical background

In this section we briefly recall the variational integration paradigm, concentrating in the two variational
principles of interest to us, namely, the Lagrange-d’Alembert principle and the Herglotz principle, summarizing
the integrators coming from them. Following that, we describe how to incorporate nonholonomic constraints to
the integrator coming from Herglotz’ principle.

2.1 Discrete variational principles

If L = L(q, q̇) is the Lagrangian of a mechanical system with configuration space Q, subject to external
forces F e, the Lagrange-d’Alembert principle states that the path q : [a, b] → Q followed by the system satisfies
δ
∫ b

a
L(q, q̇) dt+

∫ b

a
F e · δq dt = 0. If the system is subject to constraints D ⊂ TQ (given locally by the vanishing

of m functions {Φc}mc=1, linear in the velocities), the variations δq are asked to satisfy these constraints. This
leads to the usual forced Euler-Lagrange (EL) equations with Lagrange multipliers [10]. The point with variational
integrators is not to go to the EL equations, but instead, to discretize the variational principle itself (and the
constraints), which, in this case, yields the following forced constrained Discrete Euler-Lagrange equations:

D1Ld(qj , qj+1) +D2Ld(qj−1, qj) + F+
d (qj−1, qj) + F−d (qj , qj+1) = λcΦ

c,

Φc
d(qj , qj+1) = 0,

(1)

where Ld : Q×Q→ R is the discrete Lagrangian (Ld(qj , qj+1) '
∫ tj+1

tj
L(q, q̇) dt), F±d are the discrete forces,

Φc
d are the discrete constraints and λc are Lagrange multipliers (see [2] and [11] for details). Di indicates the

partial derivative with respect to the i-th argument.
For a forced system, the Herglotz variational principle consider a Lagrangian L : TQ × R → R, L =

L(q, q̇, z), and states that the path q : [a, b] → Q followed by the systems are those who are critical points of the
action z(b), where z : [a, b] → R is a solution of the initial value problem ż = L(q, q̇, z) with z(a) = 0. This is
equivalent to the path q(t) being a solution of the Herglotz equations (or generalized Euler-Lagrange equations):

∂L

∂qi
− d

dt

∂L

∂q̇i
+
∂L

∂q̇i
∂L

∂z
= 0. (2)

Following the paradigm of variational integration, instead of discretizing the Hetglotz equations, one can discretize
Herglotz’ principle to get the discrete Herglotz equations:

D1Ld(qj , qj+1, zj , zj+1) +D2Ld(qj−1, qj , zj−1, zj)
1 + hD3Ld(qj , qj+1, zj , zj+1)

1− hD4Ld(qj−1, qj , zj−1, zj)
= 0, (3)

which yields an integrator (qj−1, qj) 7→ (qj , qj+1), provided some usual nondegeneracy condition holds. This
integrator preserves the natural contact structure associated to the Lagrangian Ld [9].

Remark 1 (Backward error analysis). Backward error analysis for variational integrators seeks for modified La-
grangians which are exactly solved by the integrator coming from the discretization of the variational principle.
The cases of LA principle and Herglotz’ principle, both for holonomic systems, were recently investigated in [13]
and [9]. In this work we merely intend to apply the results obtained there.
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2.2 Contact nonholonomic integrator

Now consider that the system described by the Lagrangian L : TQ × R → R, together with Herglotz’ prin-
ciple, is subject to a constraint D ⊂ TQ described locally by the functions {Φc}mc=1. Following ideas from [11],
in order to get our contact nonholonomic integrator, we consider a discrete constraint, given by a submanifold
Dd ⊂ Q ×Q, such that (q, q) ∈ Dd, for all q ∈ Q. This submanifold imposes a constraint on the discrete curves
(q0, q1, . . . , qN ), in the sense that we must have (qj , qj+1) ∈ Dd. Now we consider the discrete Herglotz principle,
but allowing only variations of the discrete curve (qj), with fixed endpoints q0, qN , and satisfying the (continuous)
constraint, namely, δqj ∈ Dqj . By doing so, we get that the discrete curves (qj) satisfying the constrained discrete
Herglotz principle are those satisfying the following equations (in terms of Lagrange multipliers λc):

D1Ld(qj , qj+1, zj , zj+1) +D2Ld(qj−1, qj , zj−1, zj)
1 + hD3Ld(qj , qj+1, zj , zj+1)

1− hD4Ld(qj−1, qj , zj−1, zj)
= λcΦ

c,

Φc
d(qj , qj+1) = 0.

(4)

The most natural way to choose the discrete constraint Dd is by considering its defining functions Φc
d to

be a discretization of the continuous functions Φc defining the continuous constraint D. Following [11], we may
consider a discretizing map Ψ: Q×Q→ TQ such that Ld = L◦Ψ, and then, take Φc

d = Φc◦Ψ. Equation (4) thus
provides, under usual regularity condition, an integrator (qj−1, qj) 7→ (qj , qj+1), respecting the discrete constraint.

3 Experimental settings and numerical results

In this section we describe the two mechanical systems we are going to use as benchmark to test the integra-
tors, namely: the damped harmonic oscillator and the damped Foucault pendulum.

3.1 Damped harmonic oscillator

This system consists of a harmonic oscillator with mass m that undergoes a Rayleigh dissipation, i.e. a
dissipation force proportional to the velocities with parameter α. For simplicity, in all the applications we consider
m = 1.
Lagrange-d’Alembert description: In this context, the Lagrangian for this system is

L(q, q̇) = K(q̇)− V (q) =
1

2
mq̇2 − 1

2
mq2, (5)

where q is the displacement from equilibrium. The damping is modeled as an external force F (q, q̇) = −αmq̇.
For the discretization we use a linear-order discrete Lagrangian, and a corresponding linear-order quadrature

for the external force F (q, q̇),

F−d (qj , qj+1) = hF

(
qj ,

qj+1 − qj
h

)
and F+

d (qj , qj+1) = 0. (6)

Therefore, the forced discrete Euler-Lagrange equations using a position-momentum formulation are

pj =
pj−1 − hqj−1

1 + α
and qj = qj−1 + hpj . (7)

The modified Lagrangian and force for this system, being solved by a first-order forced discrete Euler-
Lagrange equations are, respectively,

Lmod(q, q̇) = L(q, q̇) + h
1

2
q̇q̈ +O(h2) and Fmod(q, q̇) = F (q, q̇)− h1

2
αq̈ +O(h2). (8)

Herglotz’ description: In this context the Lagrangian describing the system is

L(q, q̇, z) = K(q̇)− V (q)− αz =
1

2
mq̇2 − 1

2
mq2 − αz. (9)

The position-momentum formulation of the discrete Herglotz equations (3) are

qj =

(
1− h2

2

)
qj−1 + h(1− hα)pj−1 and pj = (1− hα)pj−1 −

h

2
(qj + qj−1). (10)
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As shown in [9], the modified Lagrangian for this system, being solved by a first-order contact integrator is

Lmod(q, q̇, z) = L(q, q̇, z) + h
α

2

(
1

2
q̇2 − 1

2
q2 − αz

)
+O(h2). (11)

We compare the qualitative behavior and the relative error of integrators (7) and (10). The reference solution
is obtained using a Leapfrog method with a step size ten times smaller than the compared integrators. The code
used is an extension of the code used in [9], in which we add our implementation of LA integrator. The results of
the comparisons are shown in in Figure 1, in which we test the integrators using two damping parameters α. In
both cases the Contact integrator shows a good qualitative behavior and much less relative error than the integrator
based on LA principle.
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Figure 1. Damped harmonic oscillator simulation with a small damping parameter α using the Contact integrator
and the integrator based on LA principle. In the Solutions, the x axis represents the time in seconds and the y axis
represents the displacement from equilibrium of the oscillator, h is the time step and (p0, q0) represent the initial
momentum and position, respectively.
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3.2 Foucault pendulum

General setting and simplifications: The Foucault pendulum consists of a pendulum of length l and mass m
located at latitude β on Earth’s surface. We may consider here a Rayleigh dissipation with parameter α. The plane
of oscillation does not rotate in a reference (X,Y, Z) fixed in space, hence as Earth rotates this plane rotates with
respect to a reference (x, y, z) attached to Earth. To model this problem we consider the inertial frame (X,Y, Z)
with origin at the center of the Earth, and Z passing through the north pole, hence, the angular velocity of Earth,
Ω points along Z. On the other hand, the noninertial frame (x, y, z) is such that x points along a meridian in the
south direction, y points to the east along the parallel β and z coincides with the vertical at the pendulum location.
Hence, the vector position r = (x, y, z) of a particle in the noninertial frame satisfies the relation ω = r×ṙ

‖r‖2 , where
ω = (Ω cosβ, 0,−Ω sinβ) is the angular velocity of the particle in the noninertial frame.

As the pendulum forms a small angle φ in its oscillatory motion, the coordinates x, y are of order lφ, whereas
z is of order lφ2 and so it is negligible. Thus, we may consider the movement of the mass pendulum in the plane
z = 0 and take q = (x, y) as generalized coordinates. With these considerations, the kinetic energy K(q̇) and
potential energy V (q), in terms of the mass m, the length l and the gravitational acceleration g, are given by:

K(q̇) =
1

2
m(ẋ2 + ẏ2) and V (q) =

1

2
m
g

l
(x2 + y2), (12)

while the relation ω = r×ṙ
‖r‖2 reads

− yẋ+ xẏ + Ω sinβ(x2 + y2) = 0, (13)

which is a nonholonomic constraint for the system.

Lagrange-d’Alembert description: In this context, the Lagrangian is L(q, q̇) = K(q̇) − V (q), which according
to our previous computations reads

L(q, q̇) =
1

2
m(ẋ2 + ẏ2)− 1

2
m
g

l
(x2 + y2), (14)

subject to the constraint (13). The damping is modeled as an external force F (q, q̇) = −αmq̇.
To derive the integrator for this case we use equation (1) with a linear-order quadrature for both the Lagrangian

and the external force, while the discrete constraint is obtained using the discretizing map Ψ on equation (13)
(see [11]). The resulting equations are

−xj+1 + 2xj − xj−1
h

− hg
l
xj − α(xj+1 − xj) + λ1

yj
m

= 0

−yj+1 + 2yj − yj−1
h

− hg
l
yj − α(yj+1 − yj)− λ1

xj
m

= 0

−yj
xj+1 − xj

h
+ xj

yj+1 − yj
h

+ Ω sinβ(x2j + y2j ) = 0,

(15)

where λ1 is a Lagrange multiplier.

Herglotz’ description: Here, the Lagrangian is taken as L(q, q̇, z) = K(q̇)− V (q)−αz, which, according to our
previous analysis becomes

L(q, q̇, z) =
m

2
(ẋ2 + ẏ2)− mg

2l

(
x2 + y2

)
− αz, (16)

also subject to the nonholonomic constraint (13).
To derive the Contact integrator for this system we use a linear-order approximation in equations (4), i. e.

zj+1 − zj = hL(xj , xj+1, zj , zj+1), (17)

and the constraints are discretized in the same way as in [11]. The resulting equations are

−xj+1 + 2xj − xj−1
h2

− g

l
xj − α

(
xj − xj−1

h
− h

2

g

l
xj

)
+ λ1

yj
m

= 0

−yj+1 + 2yj − yj−1
h2

− g

l
yj − α

(
yj − yj−1

h
− h

2

g

l
yj

)
− λ1

xj
m

= 0

−yj
xj+1 − xj

h
+ xj

yj+1 − yj
h

+ Ω sinβ(x2j + y2j ) = 0,

(18)
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where λ1 is a Lagrange multiplier.

As can be noted, the discretization of the constraints in both integrators LA and Contact are the same.
The results of the comparisons are show in Figure 2, in which we test the integrators using two damping

parameters α, for a Foucault pendulum ofm = 28 kg, l = 67 m, latitude β = 49◦ and step size h = 0.1, swinging
for a time of 3600 s. In the first case, the dissipation is α = 0.001 and both integrators show indistinguishable
behavior in terms of energy dissipation and trajectory of pendulum bob. To model a more realistic pendulum with
drag we decrease the value of the dissipation parameter to α = 0.0001 for a second simulation, in this case the LA
integrator displays an anomaly, as the energy of the system spuriously drops and the plane of oscillation changes
direction in a discontinuous way at a given moment, whereas the Contact integrator, with the same parameters,
does not suffer from these anomalies, displaying good qualitative behavior.
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Figure 2. Foucault pendulum simulation with two values of the damping parameter α using the Contact integrator
(blue) and the integrator based on LA principle (orange). In the plots a) and b), α = 0.001, whereas in the plots c)
and d), α = 0.0001. In plot a) and c) are plotted the energy functions of the integrated systems and in the plots b)
and d) are plotted the trajectories of the pendulum bob as simulated by the two integrators. In all the experiments
the initial conditions are q(0) = (0.67, 0) and q̇(0) = (0, 0).

4 Conclusions

In this paper, we construct a contact variational integrator incorporating nonholonomic constraints to an
integrator coming from a discretization of Herglotz’ principle.

With a numerical simulation of the damped harmonic oscillator (holonomically constrained), we demon-
strate that this integrator outperforms the one coming from the Lagrange-d’Alembert principle (which displays
overdamping). This is expected, since Herglotz’ principle naturally incorporates the nonconservative nature of
dissipative systems, while Lagrange-d’Alembert does not.

On the other hand, for the dissipative nonholonomic case, we perform numerical simulations of the damped
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Foucault pendulum, and discover that the new integrator displays a good qualitative behavior, while the Lagrange-
d’Alembert integrator (under the same conditions) presents qualitative anomalies. It is worth noting that one of the
main interest behind variational integration is precisely the good qualitative behavior in long-time simulations. We
want conservative systems to preserve their conserved quantities, we want continuous systems to display continu-
ity, and so on. That being said, the anomalies displayed by the Lagrange-d’Alembert integrator disappear when we
refine the time-step by a factor of 20, which certainly implies a computational cost that might be undesirable. A
fundamental question raised at this point is the following: as it was already mentioned, the dissipative nature of sys-
tems are naturally incorporated into the Herglotz principle, and behind this is the fact that both Herglotz’ principle
and the dynamics of dissipative systems naturally fit into the framework of contact geometry. The situation regard-
ing nonholonomicity is not so clear, and thus, it is unclear if the anomalous behavior of the Lagrange-d’Alembert
is geometric in nature or it is purely a numerical issue.

The authors are enthusiastic with the numerical results obtained by this new integrator. At the moment, we
are working in the backward error analysis of the variational integrators with nonholonomic constraints. This is an
important issue, since it allows a quantitative way for comparing different models, and in some cases, it determines
what kind of modifications can be implemented to construct better integrators as was illustrated in [14] for the
holonomic situation.
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