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Abstract. Uncertainty analysis is fundamental in structural engineering in order to incorporate imprecise 

information, errors, and limitations into theoretical models. Various techniques have been developed over the years 

to access the uncertainty, with advances regarding semilinear boundary value problems to correctly represent the 

probability spaces, namely spectral decomposition and collocation. However, the analysis is continuously 

improving for initial value problems, and nonlinear problems in general since the methods developed to decompose 

the probability spaces do not behave well in such cases. When uncertainties are given in spaces of distributions, 

such as white noise processes, the applicability of those techniques is even more limited, leaving the Monte Carlo 

sampling strategies as the final and, in various cases, the only choice of analysis. We consider a planar nonlinear 

beam equation under an additive white noise excitation and imperfections to exemplify these limitations. To obtain 

the dynamics of such a system, we spatially discretize the problem using the first linear vibration mode and analyze 

the resulting differential equation by varying the uncertainty parameters. A stochastic differential equation of Itô 

type is derived to verify the white noise excitation. We demonstrate the global dynamics through the generalized 

cell mapping, which is used to construct both the Perron-Frobenius and the Koopman operator of the differential 

equations. This example shows the effects of noise on the resonant solutions of nonlinear dynamic problems, 

stabilizing the nonresonant solution. Also, the mutual impact of noise with imperfections demonstrates the 

correlation of parametric uncertainty with random vibrations. 
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1  Introduction 

Slender structures, such as cables, rods, membranes, and shells, can display various phenomena when 

dynamically excited. They are susceptible to large displacements and rotations, which implies that nonlinear 

geometric stiffness contributes significatively to the structure’s behavior. Therefore, it is necessary to accurately 

model these nonlinearities to address the dynamics of such structures. 

Specifically, Euler-Bernoulli beams have been subjected to various studies. Nayfeh and Pai [1] explain that 

nonlinear beam theories tend to be highly coupled, making the analysis a problematic process. One such theory is 

proposed by Crespo da Silva and Glynn [2, 3], which derived a set of coupled nonlinear third-order equations that 

govern the flexural-flexural-torsional-inextensional motions of slender beams considering both geometric and 

inertial nonlinearities. Resonance conditions were verified analytically through multiple scales analysis in several 

works. For example, Crespo da Silva and Glynn [3] addressed the forced nonplanar motions, Crespo da Silva and 

Zaretzky [4, 5] studied primary and secondary flexural-torsional resonance and Nayfeh and Arafat [6, 7] obtained 

the responses to parametric excitation. Later, the dynamic stability under different load conditions and cross-

section geometries was investigated by Carvalho, Gonçalves, Rega and Del Prado [8, 9]. The exact Euler-Bernoulli 

theory is presented by Nayfeh and Pai [1], where they show how simplifications lead to different sets of equations. 

Regarding imperfect beams, two analytic approaches can be considered, varying the reference axis. For small 

imperfections, Aghababaei, Nahvi, Ziaei-Rad [10, 11] showed that a set of perfect axes leads to more 

straightforward derivations, while Nayfeh and Pai [1] demonstrated that the full curved inertial axes need to be 
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considered for larger imperfections. However, the small imperfections case needs clarification, with no studies 

addressing their effect on nonlinear dynamics, except for few resonant cases. Besides parametric uncertainty, the 

modeling of loads as stochastic processes has been fulfilled by Silva and Gonçalves [12], effectivelly considering 

a wide frequency spectrum and its action over global dynamics. The same stochastic load was considered by 

Orlando, Gonçalves, Rega and Lenci [13], observing its effect over the global dynamics of a multistable system. 

In the present work the slender beam equation of motion is obtained based on the works by Crespo da Silva 

and Glynn [2, 3]. The introduction of geometric imperfections is based on the work of Aghababaei, Nahvi, and 

Ziaei-Rad [10]. However, we consider a case with only flexural motions, simplifying the equations of motion. The 

effects of additive noise and modal imperfections on the global dynamics are shown with the generalized cell-

mapping proposed by Hsu and Chiu [14, 15]. Because of the strong nonlinearities and the probability space of 

white noise processes being a space of distributions, the Monte Carlo method is employed in the construction of 

the transfer operators. Precisely, the noise and imperfection effects over nonresonant and resonant solutions are 

considered, changing the probability measures and basins of attraction. 

2  Mathematical formulation 

The flexural Euler-Bernoulli beam equation with imperfections is formulated through the extended 

Hamilton’s principle. An elastic material is considered with small elastic strains. After the first modal equation is 

presented, the transfer operators are addressed. 

2.1 Flexural third-order Euler-Bernoulli beam 

The kinematics of an imperfect beam is defined with respect to three curvilinear coordinate systems: the 

deformed axes (ξ, ζ), the undeformed axes (ξ0, ζ0) and the material axes (X, Z). The deformed and material axes 

define the Eulerian and Lagrangian frame of reference, respectively, with the latter corresponding to the perfect 

model. The undeformed axes represent the imperfect model, which corresponds to a stress-free configuration. A 

schematic of all three frames is given in Fig. 1, with also the undeformed and deformed arc lengths s and s̃, 

respectively. 

 

Figure 1 – Orientation of imperfect undeformed and deformed frames with respect to material axes 

In the derivation, a damping term cw and external distributed load Qw are considered. The nondimensional 

equation is given by 
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where 
0w w w= + , ( ) d dx = , ( ) d dt

•
=  and Jη is the nondimensional rotational inertia.  

A clamped-free beam is considered with the following cantilever boundary conditions 
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The displacement field w(x, t) and imperfection w0(x) are given respectively by 
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where i

wF  are solutions of the Rayleigh beam equation, 

 iv 0,w J w w
− + =  (4) 

subjected to boundary conditions, eq. (2). Considering the displacement field and imperfection in the form of the 

first vibration mode, by direct substitution of eq. (3) into eq. (1) followed by a Galerkin projection, the equation 

of motion of the sdof model is obtained. Assuming a beam with length 20, rectangular cross-section with height 2 

and width 1, the equation takes the form  
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Equation (5) is a Duffing type equation with strong nonlinear terms due to the rotational inertia Jη. Also, the 

imperfection w0 dictates if second-order terms will be present, which will be demonstrated to change the beam 

behavior. Rewriting it as a first-order system and considering a standard Brownian motion Wt, eq. (5) becomes 

 

( ) ( ) ( )
( )

 (

)

1

2 2

0 0 1

2 2 2

0 1 0 1 1

2 3 2

0 1 1 1

2

1 0 0

,

2.6030 0.7832 cos 1.0007 3.5799

4.5948 12.3147 9.9257 4.5948

90.1911 40.1327 1 4.5948

9.1895 8.18

w w

t

w v

v w q t w c w

w w w w w

w w w w

w w w W

=

= +  − +

− − + +

− − +

+ + +

 (6) 

where σ is the standard deviation parameter. This system is formally a Langevin equation, interpreted as a particle 

within a potential well excited by a deterministic force qw and a noise fluctuation 
tW . The derivative of the 

Brownian motion is formally a white noise. Different interpretations can be considered, such as the Itô and the 

Stratonovich ones, see Zhang and Karniadakis [16]. The Itô interpretation is here considered, resulting in a 

stochastic differential equation. Also, the deterministic case is retrieved when 0 = . 

2.2 Discretization of transfer operators 

Equation (6) generates a measurable dynamical system 
t . The phase-space is the bidimensional euclidean 

plane, 
2 , naturally endowed with the Borel σ-algebra ( )B , and continuous time  . Differences 

between the invariant measure structures of the deterministic and stochastic case are substantial since the latter 

constitutes a cocycle over the random space generated by the random noise. For more details, see L. Arnold [17] 

and V. Arnold [18]. 

Despite their differences, the measures’ evolution of both deterministic and stochastic dynamical systems are 

governed by the Perron-Frobenius operator 
t
 and the Koopman operator 

t
. The Perron-Frobenius operator acts 

on density distributions f , and is defined as 
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where 1n  . The measure μ can be the Lebesgue measure for deterministic systems or a more complicated 

structure, such as a Dirac measure or a tensor product between the phase-space and the stochastic space, see Hmissi 

[19]. Also, the σ-algebra G  can be ( )B , for deterministic systems, or ( )B W , with W  as the σ-algebra of 

the stochastic space. The Koopman operator is 
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acting on observables g of the dynamical system 
t . The transfer operators are dual to each other,  

 , , .t tf g f g
 
=  (9) 

Therefore, one operator can be obtained from the other without further complications. 

The Perron-Frobenius operator 
t
, in particular, defines a functional linear dynamical system over

t . It 

follows an ensemble of trajectories, where 
t  is the evolution of only one trajectory. Complicated nonlinear flows, 

both deterministic and stochastic, can be represented in this manner, and each particular topology in 
t  has a 

counterpart in 
t
. For example, Bollt and Santitissadeekorn [20] demonstrated that fixed points are equivalent to 

atomic measures, 
t t x xx x  =  = , and as such, are eigenfunctions with unitary eigenvalues. 

The discretization of the transfer operators is considered by the generalized cell-mapping, described by Hsu 

and Chiu [14, 15]. It is identical to the previously defined Ulam method, see Guder and Kreuzer [21], which 

approximates 
t
 by a zero-order Galerkin method. The phase-space  is discretized into a disjoint collection of 

k sets,  1, , kb b , and 
t
 is approximately given by 
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where pij are elements of a stochastic matrix [pij]. These elements correspond to the probability of the system to 

evolve from set bj to set bi under the dynamical system 
t . Such probabilities are obtained by a Monte Carlo 

sampling due to the strong nonlinearities of the problem in consideration. Furthermore, the Koopman operator 

approximation is obtained by the transpose of [pij], [kij] = [pij]*, due to the dual relation in eq. (9). 

A significant result is given by Lindner and Hellmann [22]. They showed that the fixed space of [kij] could 

be used to approximate the basin structures of 
t , given that the dynamical system is continuous. This result is 

explored in this study, and stochastic basins of attractions are obtained by adopting the concept of 0-absorption 

stability as the infinity time convergence of dynamical systems. 

3  Results 

3.1 First mode primary resonance 

The resonance diagrams for different levels of imperfection are presented in Figure 2, obtained with the 

continuation of the periodic responses for the deterministic case, σ = 0. The resonance diagrams are of the 

hardening-type, with possible nonresonant and resonant solutions for excitation frequencies 
nat  . As the 

imperfection increases, the resonance curve shifts toward lower frequencies, changing the frequency band for 

which the model is susceptible to large amplitude vibrations and amplitude jumps. 
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Figure 2 – Resonance curves for increasing geometric imperfection magnitudes and qw = 0.2 

3.2 Global dynamics 

The global dynamics of eq. (6), for a parameter set where resonant and nonresonant solutions exist, is now 

addressed. The phase-space window is {-3..3,-9..9}, discretized into 300x900 disjoint sets each with 25x25 initial 

conditions in the deterministic case, and 5x5 initial conditions in the stochastic case. The boundaries are adopted 

as absorbing so that solutions that are mapped outside the phase-space are flagged as escape. Specifically, each 

initial condition is integrated 100 times when the noise term is nonzero. Therefore, 625 and 2500 trajectories are 

accounted for the deterministic and stochastic case, respectively. 

Figure 3 present the results for the deterministic case with w0 = 0.05. The density, Figure 3a, shows the 

presence of two attracting regions near (0, 0) and (0.5, 2) corresponding to resonant and nonresonant solutions, 

respectively. The nonresonant densities are more prominent, meaning that more initial conditions in the adopted 

window converge to these solutions in comparison to the resonant solutions. The basins of attraction of 

nonresonant and resonant solutions are displayed in Figure 3b, c. Since σ = 0, the blurred boundaries are the result 

of the discretization of the transfer operator, eq. (10). 

   
(a) (b) (c) 

Figure 3 – Probability density (a), and basins of attraction of nonresonant (b) and resonant (c) solutions for 

qw = 0.2, Ω = 3.632, σ = 0, w0 = 0 

The stochastic and imperfect case, with σ = 0.05 and w0 = 0.05, is displayed in Figure 4. The density of the 

nonresonant region spread out over larger areas in phase-space, decreasing their maximum values, see Figure 4a. 

The resonant solution also have their areas increased in comparison with the deterministic case. However, this 

effect is partially nullified by the imperfect case, resulting in lower maximum values for the resonant solution. 

Stochastic basins of attraction are presented in Figure 4b, c, corresponding to zero escape probability, see Lindner 

and Hellmann [22]. The noise blurs the basin boundaries so that initial conditions in these regions can converge to 
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both solutions with a fixed probability. The imperfection also impacts the basin topologies significantly, with the 

resonant basin not having any region with probability 1. Therefore, solutions can escape to nonresonant solutions 

in a finite time, with the basins represent a mean expectation of the solutions distribution for t → . 

   
(a) (b) (c) 

Figure 4 – Probability density (a), and basins of attraction of nonresonant (b) and resonant (c) solutions for 

qw = 0.2, Ω = 3.632, σ = 0.05, w0 = 0.05 

4  Conclusions 

The effects of modal imperfections and additive noise on the nonlinear and global dynamics of a slender 

beam are addressed. The resonance curves are obtained for increasing imperfection magnitudes, showing a shift 

of the curves towards smaller frequencies. The influence of modal imperfections and noise on the global dynamics 

are studied with the generalized cell-mapping, also named Ulam’s method. Modal imperfections destabilize the 

resonant solutions, agreeing with the result observed in the resonance curves. Furthermore, these solutions are also 

susceptible to instability due to additive noise, as confirmed by the stochastic basins of attraction: as noise and 

imperfection increases, the 0-absorption stability region of the resonant solutions shrinks. The detailed basin 

evolution will be addressed in future research, with different types of noise. 
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