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Abstract. While static loads are more predictable and commonly applied in a project, dynamic ones are more 

complex due to its irregularity and its dependency on time. But the importance of knowing how the structures are 

affected and behave when dynamic loads are applied is essential to a building. Into the dynamic analysis, the 

natural frequency is one of the modal parameters vastly used to describe the comportment and the problems that 

the dynamic loads cause, such as resonance that induces to higher deflections. Thus, this paper will perform modal 

analysis of a steel beam, undamaged and damaged, through two different calculus approaches: analytical and 

numerical. The analytical approach data used in the modal analysis was calculated based on three generical 

equations; for the numerical study, ABAQUS software based in the finite element method was used. The numerical 

model was created in 1D, 2D, and 3D for the undamaged beam to compare the results with the parametric ones, 

and in 2D for the damaged beam. The natural frequencies obtained by all method was satisfactory, and this 

outcome might be useful for more complex research as composite structures composed by a steel beam and a 

concrete slab. 
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1  Introduction 

The loads that can affect the structure must be well-known, considering that any impact can interfere with 

the integrity and security of a building. The dynamic loads are more complex because, differently from the static 

loads, they depend on time. The behavior of the structure depending on time can be comprehended by the modal 

parameters, which are tools responsible for determinate the dynamic characteristic of the structure, known as 

natural frequencies, mode shapes, and damping. 

The natural frequencies describe the vibration of the structure when there is no force applied. According to 

Mello [1], nowadays, the new architecture and the evolution of the construction are working with lighter materials 

together with bigger spans. Because of this modernity in the structure, the natural frequencies are lower and closer 

to human activities. When this frequency of the structure is the same that the dynamic load applies, causes 
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resonance, which provokes higher deflection or the structure collapse.  

Many standards around the world mentioned the consequences that can cause in the structure. According to 

ISO 2631/1 (1997) [2], the vibration in the structure can not only affect the structure but causes nausea and loss of 

comfort and productivity for the people. NBR 15575[3] defined that the structure cannot have the consequences 

of vibration that affects its lifetime or the comfort of the people. 

To avoid the consequences of vibration, some standards define rules for the natural frequency of the structure. 

The Brazilian standard NBR 6118 (2014) [4] does not specify how to calculate the natural frequency but defines 

that any structure susceptible to dynamic loads must have that frequency 1.2 times higher than the critic frequency 

established by the standard for each type of construction. The AISC [5] determines the acceleration limit and the 

range of frequency for each type of construction and gives a simplified equation, in the absence of experimental 

or numerical approach, to calculate the natural frequency. 

The calculation of the natural frequency can be made analytically, numerically, and experimentally. Although 

the results must be similar, each type of calculation has its peculiarity, and to prove the efficacy of the method, its 

necessary to calculate in more than one form.  A couple of research were made comparing the natural frequency 

results obtained by experimental and analytical results. Fammy and Sidky [6] worked with a composite floor and 

achieved a difference, of the fundamental frequency, of 7,29% - 10,045% by the calculus AISC [5] standards and 

experimental results. Ahmed and Badaruzzaman[7] tested a panel, and the fundamental frequency captured by the 

experiment was 3,29% lower than the analytical calculus made using the Design Guide on Vibration of Floors [8]. 

Although small cracks and the deterioration of the structure are common to see over time, the equations by 

AISC [5] and Design Guide on Vibration of Floors [8] are used for the undamaged structure. Then to calculate 

analytically, the natural frequency for a damaged beam is used the equations based on Gillich and Praisach [9]. 

The objective of this comparison is to evaluate the numeric model on different analyses, and the efficacy of 

the simplifies equation in a simple model, Figure 1, to apply on complex structures lately.  

 

Figure 1. Transversal and longitudinal sections in mm 

2  Numeric Modelling 

The numeric analyses were carried out by using a finite element software ABAQUS/CAE to determine the 

natural frequency of the beam undamaged and damaged. For both outcomes were used the material characterized 

in, Table 1, where Es is the modulus of elasticity of steel, It is the moment of inertia, w is the uniformly distributed 

weight per unit length, L is the length, 𝜌 is the density of the steel, 𝜈 is the poisson’s ration. 

Table 1 Parameters of the steel beam 

Parameters Value 

Es (MPa) 200000 

It (m4) 0.003 

𝜌 (g/cm3) 7.8 

𝜈 0.3 

w (kN/m) 10.518 

L (m) 3 
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2.1 Undamaged Beam 

The beam was modeled in three different forms: as 3D solid and for meshing purpose, a C3D8R was used, 

as 2D shell and mesh of CPS4R and as a 2D wire and mesh of B21. The goal was to study the same structure in 

one (2D wire), two (2D shell), and three dimensions (3D solid). The natural frequencies obtained, displayed in, 

were from the first three mode vibrations for the three distinct models, Figure 2. 

 

a) 

 

b) 

 

c) 

 

Figure 2. a) First b) Second and c) Third mode of vibration  

Table 2. Numeric Values for the Natural Frequency of the Undamaged Beam 

 Natural Frequency for each Mode of Vibration (Hz) 

Model  First Second Third 

1D  150.95 524.85 1005.4 

2D  178.94 462.31 1350.5 

3D 186.08 494.97 1377.2 

2.2 Damaged Beam 

The damaged beam was modeled in 2D shell with a crack of 2cm and 4cm in the middle bottom of the beam, 

as illustrate Figure 3. The natural frequencies obtained for both beams are in Table 3. 

 

Figure 3. Beam with a 4 cm crack 
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Table 3. Numeric values for the natural frequency of the damage beam 

 Natural Frequency for each Mode of Vibration (Hz) 

Model by size of crack First Second Third 

2cm crack  174.24 463.65 1337.5 

4cm crack 173.67 463.70 1334.5 

3  Analytical Calculus 

3.1 Undamaged Beam 

This calculus will use three general solutions to calculate the natural frequency of the steel beam, shown in 

Table 4: the equation of AISC [5], the Design guide on the vibration of floors [8], and an equation-based in Euler–

Bernoulli beam theory [9]. This method has the advantage of being fast and no need to experiment or make a 

numeric model. But as any other simplified calculus, it gives a generic result and is more untruthful than an 

experimental or numerical result. 

   The AISC uses the equation (1) to determine the natural frequency of a simply supported and uniformed 

loaded beam. Where f1 is the fundamental frequency (Hz), those values of the incognitos needed for the equation 

(1), (2) and (3) below are listed in the Table 1. 

𝑓1 = 0,18√(
𝑔(384𝐸𝑠𝐼𝑡)

5𝑤𝑗𝐿4
) = 161.72 𝐻𝑧 . 

 

(1) 

 The design guide on the vibration of floors utilize another calculus, equation (2). Where Cb is 1,57 for simply 

supported beams and m is the mass per unit length. 

𝑓1 = 𝐶𝑏√
𝐸𝑠𝐼𝑡

𝑚𝐿4
= 160.99 𝐻𝑍 . (2) 

The equation based in Euler–Bernoulli beam theory [9] is calculated by equation (3). Where λ𝑖  for i vibration 

mode.  

𝑓𝑖 =
𝜆𝑖2

2𝜋
√

𝐸𝑠𝐼𝑡

𝜌𝐴𝐿4
= 161.081 𝐻𝑧 . (3) 

Applying the same concept of equation 3 to find the natural frequency for the second and third mode of 

vibration, the results are displayed in Table 4. 

Table 4. Analytical values for the natural frequency of the undamaged beam 

 Natural Frequency for each Mode of Vibration (Hz) 

Number of equations First Second Third 

Equation 1  161.762 647.048 1456 

Equation 2 160.99 643.996 1449 

Equation 3 161.081 644.323 1450 

3.2 Damaged Beam 

For the damaged beam, the equations used to find the natural frequency for the damaged beam (𝑓D) are based 

in the equation (3) and work by Gillich and Praisach[9] and equation (4), which is the maximum deflection for this 

type of beam of load and support. 

𝑉𝑚á𝑥 =
𝑤𝐿2

384𝐸𝐼
(5𝐿𝑠2 − 24𝑎2). (4) 

Where Vmáx is the maximum deflection of the beam, Ls is the space between the supports, and a is the distance 
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overhanging. Joining the equation (3) and (4): 

𝐸𝐼

𝑝𝐴
=

𝑔𝐿2

384𝑉𝑚á𝑥

(5𝐿𝑠2 − 24𝑎2), 

𝑓𝑖 =
𝜆𝑖2

2𝜋
√

𝐸𝑠𝐼𝑡

𝜌𝐴𝐿4
=

𝜆𝑖2

2𝜋
√

𝑔(5𝐿𝑠2 − 24𝑎2)

384𝐿2𝑉𝑚á𝑥

. 

𝑉𝑚𝑎𝑥 was calculated numerically by the model 2D shell displayed in chapter 2, presented in Table 5. 

Table 5. 𝑉𝐷𝑚𝑎𝑥 and natural frequencies for each damaged beam 

  Natural Frequency for each Mode of Vibration (Hz) 

Model by size of crack 𝑉𝐷𝑚𝑎𝑥(mm) First Second Third 

2cm 0.010233 174.93 699.72 1574 

4cm 0.010360 173.85 695.402 1565 

4  Discussion 

The results obtained by analytical and numeric calculus for the undamaged beam is presented in Table 6. 

Table 6. Numeric values for the natural frequency of the undamaged beam 

  Natural Frequency for each Mode of Vibration (Hz) 

 Type First Second Third 

Numerical Results 

1D  150.95 524.85 1005.4 

2D  178.94 462.31 1350.5 

3D 186.08 494.97 1377.2 

Analytical Results 

Equation 1  161.762 647.048 1456 

Equation 2 160.99 643.996 1449 

Equation 3 161.081 644.323 1450 

 Arithmetic average 161.277 645.122 1451.667 

 

The difference between the numeric results and the arithmetic average of the analytical results, displayed I 

in Figure 4, has shown that for the first mode of vibration, all models stayed almost in the same rate of percentage 

of 10% of the difference, but the 1D is most similar to the analytical result. For the second mode, the discrepancy 

of the frequencies was a minimum of 20%, and that made the second mode not useful for this study. The third 

mode had the closest value to analytic results by 3D model.  

 

Figure 4. Difference between numeric and analytic result for undamaged beam 

 Table 7 and Figure 5 presented that the damaged beam had a great result for the first natural frequency, 

of only 1% and 1,03% of the difference between the numerical and analytical results for the crack of 2cm and 4cm, 

0

1000

2000

0

1000

2000

1 2 3

Fr
e

q
u

e
n

cy
 (

H
z)

Mode of vibration

1D

2D

3D

arithmetic
average



Analysis of modal frequencies of beams by a numerical and analytical approach 

CILAMCE 2020 

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC 
Foz do Iguaçu/PR, Brazil, November 16-19, 2020 

respectively. But as the outcomes of the second mode for the undamaged beam, the results were not satisfactory 

also for the cracked beam. The third mode had an average difference of 15%.  

Table 7. Numeric Values for the Natural Frequency of the Damaged Beam 

  Natural Frequency for each Mode of Vibration (Hz) 

 Type First Second Third 

Numerical Results 
2cm 174.24 463.65 1337.5 

4cm 173.67 463.70 1334.5 

Analytical Results 
2cm  174.93 699.72 1574 

4cm 173.85 695.402 1565 

 

 

Figure 5. Difference between numeric and analytic result for damaged beam 

Comparing the outcomes of the calculus, Figure 4 and Figure 5, with the studies by Fammy and Sidky [7] 

and Ahmed and Badaruzzaman [8] that had 4-10% of difference between the experimental and analytical 

frequencies, it is possible to state that the in this discrepancy of average 10%, the model 1D and 2D was promising 

for first mode of vibration and the 2D and 3D for the third mode for the undamaged beam, the 2D model, overall, 

was the most close to the analytical result. And for the damage structure the first mode was the only one that got 

result compatible with the 10%.  

As predicted, the frequencies for the cracked beam were lower than the undamaged results, because the 

structure lost its integrity and rigidity, according to Figure 5 and Table 7. Numeric Values for the Natural 

Frequency of the Damaged BeamTable 7. The relation between the frequency and rigidity for one degree of 

freedom is presented in the equation (5). Where k is the rigidity (EI) and m mass. 

𝑓𝑖 = √
𝑘

𝑚
 (5) 

 

The new rigidity of the beam for the crack of 2cm and 4cm was calculated by equation (4) and correlated 

with the loss of fundamental frequency by the 2D model. Knowing that the inertia of the section does not change 

with damage, the modification occurs in the modulus of elasticity of steel. The Figure 6 show the equation 

corelating the frequency and the percentage of the modulus of elasticity of the undamaged beam.Table 6 
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Figure 6. Relation between the modulus of elasticity and natural frequency 

5  Conclusion 

 The dynamic loads constantly appear in the building, and many standards around the world made rules to 

avoid its consequences, as higher deflection and loss of comfort for people. The regulations are based on the natural 

frequency of the structure, and this parameter can be determined by experimental, analytical, or numeric calculus. 

But over time, the structure can lose rigidity, and this causes changes in the natural frequency, so to avoid the 

damages, the frequencies are calculated for an undamaged and damaged beam. 

 The natural frequencies were obtained by two different calculus: analytical, based in three general 

equations for the undamaged beam and in maximum deflection and one equation for the damaged beam, and 

numerical, made in the software ABAQUS. 

 The results were satisfactory overall, the numeric models 1D and 2D are promising for the first mode of 

vibration and the 2D and 3D for the third mode for the undamaged beam. For the damaged structure the natural 

frequencies decay, as expected, and the first mode was more precise than the others. The result of the damaged 

beam can be useful to measure the fundamental frequency of an existing structure that is suffering any loss of 

rigidity because it is possible to measure the deflection on the spot. 

 For further studies in a complex structure, is it necessary to improve the numeric model. 
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