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Abstract.
Modeling void regions is one of the main challenges in topology optimization of geometrically nonlinear

structures due to the excessive distortions of low-density elements. Several solutions to this problem have been
suggested in the literature, including interpolation methods such as the Energy Interpolation scheme and the Addi-
tive Hyperelasticity technique. These methods consist in interpolating each element’s model between the original
material for solid elements and a less stiff model for the low-density ones. In this work, we introduce the gen-
eral framework for topology optimization that handles several hyperelastic materials. Both interpolation methods
are explored in the solution of classic compliance-minimization problems under the assumption of plane strain
conditions with numerical results for two benchmark topology optimization problems being provided.

Keywords: Topology optimization, Large deformations, Energy interpolation, Additive hyperelasticity, Hypere-
lastic material

1 Introduction

In the standard element density-based formulation of Topology Optimization (TO), a constant design variable,
called density by some authors, is commonly assigned to each finite element of a discretized domain. In this
context, every finite element is a potential void or solid material, such that void regions within the design domain
are filled with low-density finite elements. It is known that such elements might suffer from excessive distortions
when considering large deformations, which may jeopardize convergence of the Newton-Raphson (NR) method.
Some authors have proposed solutions such as removing the low-density elements from the convergence criterion
(Buhl et al. [1]), removal and reintroduction of low-density elements from the mesh (Bruns and Tortorelli [2]),
using polyconvex models (Lahuerta et al. [3]) and super element condensation (Jie et al. [4]).

To address the numerical instabilities, two interpolation methods suggested in the literature are considered in
this work. They consist of modeling low-density elements as a less stiff material: the Energy Interpolation (EI)
scheme proposed by Wang et al. [5] models them according to the small deformation theory, while the Additive
Hyperelasticity (AH) technique of Luo et al. [6] uses a soft incompressible Yeoh material. Chen et al. [7] incorpo-
rated the AH into ANSYS by using a nearly incompressible Yeoh model, and observed that the EI method could
not be easily implemented due to its complexity.

A vast literature review on geometrically nonlinear TO can be found in the work of Leitão [19], who applied
a modified interpolation scheme based on the formulations of Pajot [9] and Wang et al. [5], while also providing
discussions and comparison of the proposed scheme for the St. Venant Kirchhoff (SVK) material model. Recently,
relevant works such as Klarbring and Strömberg [10] have used hyperelastic models that are known to better
represent a body’s behavior undergoing large compressions. A Matlab program based on PolyTop (Talischi et al.
[11]) was developed to compare the optimized designs obtained using the two interpolation methods, where some
changes to the original implementations were adopted to work with different hyperelastic materials on plane strain.

The outline of this article is as follows: Section 2 introduces the main features of TO; in Section 3, material
models are defined, as well as the formulations for both the EI and the AH methods; Section 4 presents the results
for each of the studied techniques and in Section 5 we present our final remarks.
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2 Topology Optimization

The goal of topology optimization is to find the best material distribution in a domain that minimizes a given
objective function (Bendsøe and Sigmund [12]). The domain is often discretized into finite elements and a design
variable xe is assigned to each element e representing whether it exists (xe = 1) or not (xe = 0). Although “0 or
1” values are desired, the design variable may assume any value in between, such that the optimization problem
can be defined as follows:

min
x

c = fTu (1a)

subject to
1

V

Ne∑
e=1

Vex̄e 6 Vfrac, (1b)

0 6 xe 6 1, (1c)
with r(x,u) = 0. (1d)

Equation (1a) is the objective function, the end-compliance of the structure that is computed from the nodal
external force vector f and displacement vector u. The volume constraint in (1b) establishes that the strucuture’s
allowed volume should be less than a given fraction, Vfrac. V is the initial volume of the domain whereas the
current volume of the structure is computed from the original volume of each element Ve multiplied by its respec-
tive x̄e defined in Section 2.2. The residual r is satisfied at every TO iteration and is defined as the difference
between f and the internal force vector. For information on finite element implementation, the reader is referred to
Kim [13]. The Method of Moving Asymptotes (MMA), introduced by Svanberg [14], is used to update the design
variables.

2.1 Design Variable Filter

The linear filter proposed by Bruns and Tortorelli [15] is used in this work and consists in a weighted average
of the design variables within a radius rmin. The filtered variable x̃e of the eth element is given by

x̃e =

∑Ne

i=1 we,ixi∑Ne

i=1 we,i
, (2)

where we,i is the weight function computed from the distance de,i between elements e and i as follows:

we,i = max

(
1− de,i

rmin
, 0

)
. (3)

2.2 Projection and Penalization

A smoothed Heaviside projection introduced by Wang et al. [16] is applied to the filtered variable such that
the projected variable x̄e of the eth element is obtained from

x̄e(x̃e) =
tanh(βη) + tanh[β(x̃e − η)]

tanh(βη) + tanh[β(1− η)]
, (4)

in which β is the sharpness parameter and η is the density threshold. For this work, η = 0.5 is fixed, but β is
subject to a continuation procedure, starting at β = 4. The Solid Isotropic Material with Penalization (SIMP)
method (Rozvany [17]) is applied to the projected variable, so the penalized variable x̂e comes from

x̂e(x̄e) = (1− ε)x̄pe + ε, (5)

where ε is a small value to avoid numerical problems – here, it is set to 10−9E (or increased to 10−4E when
convergence is not achieved), for E being the Young modulus. In this work, element’s density refers to x̂e.
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3 Interpolation Methods for Hyperelastic Materials

In order to change an element’s stiffness during TO, an approach inspired on Klarbring and Strömberg [10] is
reproduced in this work: the element’s strain energy φe is multiplied by the density of its respective element. Table
1 presents the strain energy density φ for the materials considered in this work as a function of the principal and
reduced invariants of the Cauchy-Green strain tensor, Ii and Ji, respectively. Models 2 through 7 were introduced
by Klarbring and Strömberg [10] and references therein.

Table 1. Material models used in this work.

Model Type Strain Energy Density (φ)

φ1 SVK λ
8 (I1 − 3)2 + µ

4 (I21 − 2I1 − 2I2 + 3)

φ2

Modified SVK

λ
2 (ln J)2 + µ

4 (I21 − 2I1 − 2I2 + 3)

φ3 λ(J − ln J − 1) + µ
4 (I21 − 2I1 − 2I2 + 3)

φ4
λ
2 (J − 1)2 + µ

4 (I21 − 2I1 − 2I2 + 3)

φ5

Modified nH

λ
2 (ln J)2 − µ ln J + µ

2 (I1 − 3)

φ6 λ(J − ln J − 1)− µ ln J + µ
2 (I1 − 3)

φ7
λ
2 (J − 1)2 − µ ln J + µ

2 (I1 − 3)

φ8 Mooney-Rivlin A10(J1 − 3) +A01(J2 − 3) + κ
2 (J − 1)2

φ9 Yeoh
∑3
m=1Am0(J1 − 3)m +

∑2
n=1

1
Dn

(J − 1)2n

The constants λ and µ are the Lamé parameters and κ = λ + 2µ/3 is the bulk modulus, that may also be
defined as a function of the Young modulus and Poisson coefficient ν. Amn are hyperelastic material parameters,
Di are the compressibility parameters, J is the Jacobian and Ji are the reduced invariants. The strain energy
density φNL of a given nonlinear model in Table 1, is used to calculate φe according to the interpolation as

φe =


x̂eφNL(ue) for no interpolation,
[φNL(γeue)− φL(γeue) + φL(ue)] x̂e for EI,
x̂eφNL(ue) + (1− x̂e)φY (ue) for AH,

(6)

where φL and φY are the strain energy density under small deformation and for a soft Yeoh model (φ9), respec-
tively. The parameters for φY used in this work are presented in Table 2 alongside Chen et al. [7], who also
considered the nearly-incompressible additive Yeoh model in the AH method.

Table 2. Material parameters for nearly incompressible Yeoh model, φY .

Author Formulation A10 A20 D1 D2

Chen et al. [7] Plane stress 10−9E Variable 10−9 106

This work Plane strain 10−9E 10−9E 109 109

The interpolation parameter γe is such that when γe = 1 the element is modeled by the nonlinear formulation
and for γe = 0 it behaves according to the small deformation theory, as follows:

γe(x̄e) =
tanh(β1ρ0) + tanh[β1(x̄pe − ρ0)]

tanh(β1ρ0) + tanh[β1(1− ρ0)]
, (7)

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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where β1 = 500 and ρ0 = 0.01.
To better illustrate the interpolation methods’ effects, a C-shaped structure subject to the loads indicated in

Fig. 1a is analyzed with φ1 for E = 1 Pa and ν = 0.3 (λ = 0.5769 Pa, µ = 0.3846 Pa and κ = 0.8333 Pa). The
mesh is composed by 10× 10 4-node quadrilateral elements on plane strain, with the void region being composed
of 9 × 9 elements with stiffness 10−9E. Different interpolation methods may converge to the same deformed
structure, which can be seen by comparing the results with the case without the void region depicted in Fig. 1b.

(a) Problem’s domain (adapted from
Wang et al. [5]).

(b) Deformed structure without void
regions.

(c) Deformed structure without inter-
polation.

(d) Deformed structure using the EI
method.

(e) Deformed structure using the AH
method (D1 = 2/κ = 2.4 Pa).

(f) Deformed structure using the AH
method (D1 = 109).

Figure 1. C-Shape problem and results with different interpolation models for plane strain state. Undeformed mesh
is represented in lighter shades of gray.

The AH method in particular is very sensitive to the compressibility parameters Di for the additive material
φY : Fig. 1e presents a stiff response when D1 is set to the usual value suggested in commercial programs, e.g.
Abaqus Dassault [18, Section 4.6.1]. Thus, a smaller value is required to achieve the desired result (see Fig. 1f).
The proper choice of material parameters depends on the formulation, as shown in Table 2.

4 Results

Two benchmark problems with unitary thickness, c.f. Fig. 2, are used to gauge the performance of the
interpolation methods considered in this work, where E = 3 GPa and ν = 0.4 (λ = 4.286 GPa, µ = 1.071 GPa
and κ = 5.000 GPa). The value of Vfrac is 0.5 for the cantilever beam problem and 0.1 for the clamped beam
problem. The design variables are set to unity at the start of the optimization and their change is limited at p = 3
by scaling the increment ∆x so its maximum component is ∆xlim = 0.1.

The mesh is composed by 120 x 30 elements for the cantilever beam and by 120 x 40 elements for the
clamped beam problem, with 4-node quadrilaterals used in both cases. The external load in Fig. 2b is distributed
over 2×2 elements, represented by the black square. Notice that all analysis were conducted under the plane strain
condition, as opposed to plane stress in the works of Luo et al. [6] and Chen et al. [7]. The finite element analysis
considered a constant load step ∆P = 0.1P , reduced to 0.01P when the criterion was not met in 20 NR iterations.
The displacement criterion was met when ‖u‖2 < 10−3. The following continuation scheme is used to smoothly
steer the solution to an optimum, while achieving a “0 and 1” pattern by increasing β at the end of the process:

• For 1 ≤ p < 2: p is updated every 2 iterations;
• For 2 ≤ p < 3: p is updated every 5 iterations;
• For p = 3: p is not updated anymore. β is doubled every 10 iterations up to 64.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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1 m

0.25 m

(a) Cantilever beam.

3 m

1 m

(b) Clamped Beam.

Figure 2. Benchmark problems.

The cantilever problem was solved for P = 144 kN even without using interpolations, as indicated in Fig. 3.
This is due to the elements’ deformations, which are not large enough to cause numerical instabilities, yielding
results similar to Buhl et al. [1] and Lahuerta et al. [3].

(a) No interpolation (c = 20.8750 kJ).

(b) Energy interpolation (c = 20.9029 kJ). (c) Additive hyperelasticity (c = 20.8750 kJ).

Figure 3. Deformed optimized cantilever beam for P = 144 kN with SVK model.

We were able to achieve convergence for higher loads and nonlinear models (presented in Table 1) only with
the EI scheme. Nevertheless, the results were similar to those found with the linear SVK model in previous works
– such as Leitão [19]. Some cases showed convergence issues and required extra techniques, as indicated in Fig. 4.

(a) φ2: c = 85.7381 kJ†. (b) φ3: c = 84.8082 kJ. (c) φ4: c = 84.7914 kJ.

(d) φ5: c = 84.8863 kJ‡. (e) φ6: c = 85.6145 kJ†‡. (f) φ7: c = 86.5738 kJ†.

Figure 4. Optimized cantilever beam using modified SVK (top row) and nH (bottom row).
†: Results for β = 32; ‡: ∆xlim set to 0.2 at p = 2.5 and step size reduced to 0.5%P .

The original work by Wang et al. [5] proposed the penalization of the element’s Young modulus, which
limited the choice of models that could be implemented. By penalizing the strain energy instead (see eq. (6)), any
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hyperelastic model may be used, such as Mooney-Rivlin and Yeoh. These models were optimized for P = 300
kN and constants Amn = µ/2 and D1 = D2 = κ/2. This choice of Amn makes it so the Mooney-Rivlin model is
twice as stiff than Yeoh’s, causing the difference shown in Fig. 5.

(a) φ8: Mooney-Rivlin model (c = 52.1916 kJ). (b) φ9: Yeoh model (c = 85.1235 kJ).

Figure 5. Cantilever beam optimized using other hyperelastic materials.

The clamped beam problem was solved for a load P = 230 kN with the EI method, as depicted in Fig. 6,
where the topology has been optimized to resist the buckling effect that occurs when the applied force is too high.
The other methods did not converge for this load level because the convergence criterion was not met within 1000
NR iterations per load step, even when the load step was reduced to 0.01P .

Figure 6. Optimized topology for the clamped beam using the EI method for P = 230 kN (c = 11.5027 kJ).

5 Conclusions

In this article, we have presented a general topology optimization framework in development considering
finite deformations that is capable of handling different hyperelastic materials. The proposed framework was able
to implement two interpolation methods: the Energy Interpolation (EI) scheme proposed by Wang et al. [5], and
the Additive Hyperelasticity (AH) of Luo et al. [6]. Two benchmark examples were presented to showcase the
effectiveness of different types of material models and interpolation methods. In the first example, we considered a
cantilever beam design with nine different hyperelastic models. The results indicated that, in most cases, the final
design was not significantly influenced by the choice of material; the same conclusion drawn by Wang et al. [5]. In
the second example, we considered the classical double clamped beam design that we were only able to optimize
with the EI scheme, since the other methods did not converge within the established parameters.

The use of nearly incompressible materials to model the low-density elements has shown to be less efficient
than the small-deformation theory on plane strain, as illustrated in Fig. 1f. This happens due to the fact that highly
incompressible low-density elements are not able to deform in the out-of-plane direction when under compression
on plane strain. Therefore, adjusting the materials parameters is paramount to achieve convergence, otherwise an
undesirable response can be obtained, as shown in Fig. 1e. However, since this work did not consider the update
scheme on the additive Yeoh model’s parameters proposed by Luo et al. [6], the optimization process with the AH
method was jeopardized. A proper adaptation of this update scheme to plane strain problems is likely to present
better results.

Both interpolation methods require the computation of an extra stiffness matrix and internal force vector per
element. However, for the EI method, these matrices are linear and constant, so they can be computed only once
for each TO problem, while the extra matrices required for the AH method are nonlinear and should be recalculated
at every NR iteration. Therefore, for large scale problems, the AH method may be more computationally costly.

Lastly, the use of a smoothed Heaviside projection in eq. (4) can modify an element’s density too abruptly
for high values of β. This may lead to undesirable roughness in the final topology, as seen in Fig. 4, where the β
parameter had to be reduced in some cases. Further investigation on the behavior of projection function and how it
affects the optimization process can be carried out in future studies. One way to circumvent this issue and achieve
near black-and-white designs is by removing the filter effect at the last optimization stage (when p = 3) as done
by Leitão [19] with satisfactory results. We also emphasize that an optimal set of techniques and parameters to
handle geometrically nonlinear TO is yet to be found.
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