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Abstract. This work addresses topology optimization applied to structures under free and forced vibrations using 
the density approach. A SIMP-like model is used to penalize the stiffness and the mass distribution. The density 
approach applied to structures under vibration is prone to intermediate densities in the final solution and to 
numerical instabilities on a larger scale than the static approaches. In this paper a projection scheme is applied to 
overcome the numerical instabilities characteristic of this type of approach using a Heaviside projection function 
is applied in both cases. The Heaviside function also reduces de intermediate densities in the final solution when 
compared both to the linear function and to the application of the classical sensitivity filter. Numerical examples 
are presented to illustrate the application of the projection-based technique applied to free and forced vibration 
problems. 
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1  Introduction 

Methods to achieve optimal structural designs have been under investigation for decades and the traditional 
trial-and-error process is being systematically replaced by optimization techniques applied to several steps of the 
design process. With the improvement of the methods used to describe the structural behavior, the structures 
became more sensitive to dynamic actions and effects. In this context, considering such effects from the beginning 
of the structural layout determination phase can be essential for achieving structural efficiency. Thus, the study of 
topology optimization techniques taking into account dynamic effects is a natural path and contributes to the 
improvement of the design process. 

Du and Olhoff [1] applied the density approach in topology optimization for free vibration problems and 
Olhoff and Du [2] for non-damped forced vibration. In both cases SIMP ([3], [4]) was applied. However, the 
density approach presents numerical instabilities and the final solutions contain a considerable amount of 
intermediate densities. Among the methods for controlling numerical instabilities, projection schemes stand out 
for, in addition to eliminating solutions with checkerboard patterns and mesh dependency, reduce intermediate 
densities in the final solution depending on the choice of the projection function. 

Guest et al. [5] proposed a topology optimization approach for static problems using projection schemes, an 
alternative to overcome numerical instabilities providing control over the size of the resultant structural members. 
The results obtained using a Heaviside-like projection function presented low amounts of elements with 
intermediate densities. A similar technique was applied by Almeida et al. [6], who used inverse projection schemes 
to control the void distribution in the final solution. Latter Guest [7] used projection schemes with multi-phase 
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projections and Li and Khandewal [8] studied the relation between continuity techniques and the preservation of 
volume of the structure. 

The present work applies projection schemes to topology optimization problems of free vibration and non-
damped forced vibration. The projection functions are studied in particular to obtain smaller amounts of elements 
with intermediate densities in the applications in dynamics problems. 

2  The density approaches 

The density method is based on the material distribution in an extended domain, with the presence and 
absence of material determining the structural layout. In the original approach, which is still the most widespread 
today, the design variables represent the proportion of material in each region of the extended domain, representing 
a pseudo density, simply called density. Although several methods can be used for structural analysis, in most 
cases a discretization of the extended domain in finite elements is used. The design variables represent the element 
densities, ρel, with the null value representing the void and the unit the solid material. 

For structural analysis, it is necessary to associate density with the mechanical property representing the 
material strength, in this case the Young's modulus. The SIMP (Solid Isotropic Material with Penalization) model 
is the most widely material model associated to the density methods. Equation (1) presents the SIMP model, in 
which a density penalty leads to the void-solid final solution. 

  p
el el sE Eρ=  (1) 

Where: ρel is the density of the element el; Eel is the Young's modulus of element el with density ρel; Es is the 
Young's modulus of the solid material; and p is the penalty factor. 

2.1 Formulation for static analysis 

The most studied optimization problem for static analysis is the so-called compliance problem, presented in 
eq. (2). The objective is to minimize the mean compliance of the structure while keeping the structural volume 
constant. A minimum value, xmin, is applied to the design variables in order to prevent singularity of the stiffness 
matrix associated to the degrees of freedom in the void region. 
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Where: x represents the design variables; ρ represents the element densities; c is structural mean compliance; F 
represents the nodal forces; K is the structure stiffness matrix; U represents the nodal displacements; Vel is the 
volume of element el; Vd is the volume of the extended domain; f is the prescribed volume fraction; xmin is the 
minimum value for the design variables. 
 

The sensitivity of the objective function with respect to the element densities is given by eq. (3). If element-
based design variables are applied with no projection scheme, the design variables x are equal to the element 
densities ρ and eq. (3) represents the sensitivity of the objective function with respect to the design variables as 
well. 
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If nodal design variables are applied there must be a function relating the element densities ρ to the design 
variables x and the sensitivity of the objective function with respect to the design variables is evaluated by eq. (4). 
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2.2 Formulation for free vibration 

In the free vibration problems in topology optimization, the objective is to maximize the first natural 
frequency of the structure, associated to a compliant behavior. Bendsoe and Sigmund [9], point out that the solution 
thus obtained is very likely to be also suitable for static problems. The problem is presented in eq. (5). 

 

( )

2
1

min

2
1 1

Obtain :

( ( )) 
Maximizing : ( ( ))

( ( )) 

Such that :   

 0 < 1

With : ,  

(  ( ( )) ( ( )))  =

T
i i
T
i i

el el d

j

el el s

V f V

x x

E E E

ω

ρ

ρ

ω

=

=

≤ ≤

=

− +

∑

x

Φ K ρ x Φ
ρ x

Φ M ρ x Φ

M ρ x K ρ x Φ 0

 (5) 

Where: ω1 is the natural frequency of the structure; K is the structure stiffness matrix; M is the mass matrix; Φ is 
the eigenvector of the vibration modes. 
 

The sensitivity of the objective function with respect to the element densities is given by eq. (6). If element-
based design variables are applied with no projection scheme, the design variables are equal to the element 
densities and Eq. (6) represents the sensitivity of the objective function with respect to the design variables as well. 
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If nodal design variables are applied the sensitivity of the objective function with respect to the design 
variables is evaluated by eq. (4). 

2.3 Formulation for non-damped forced vibration 

For structures under non-damped forced vibrations problems, the objective of the topology optimization is to 
maximize the dynamic compliance. The formulation described by Olhoff and Du [2] is presented in eq. (7). 
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Where: Cd is the dynamic compliance; P is the vector of the amplitudes of the harmonic force; and Ω is the 
excitation frequency. 
 

The sensitivity of the objective function with respect to the element densities is given by eq. (8). If element-
based design variables are applied with no projection scheme, the design variables are equal to the element 
densities and Eq. (6) represents the sensitivity of the objective function with respect to the design variables as well. 
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If nodal design variables are applied the sensitivity of the objective function with respect to the design 
variables is evaluated by eq. (4). 

3  Projection schemes 

Topology optimization problems solved using the density method are subject to numerical instabilities, such 
as checkerboard patterns and mesh dependency. A widely used technique used to overcome these instabilities is 
the so-called sensitivity filter. However, as much as the sensitivity filter bypasses such instabilities, the final 
topology still has a considerable number of elements with intermediate densities. In this work, projection schemes 
were used with the smoothed Heaviside projection function proposed by Guest et al [5]. By this approach, the 
design variables are associated with the nodes of the finite element mesh that discretizes the extended domain and 
related to the element density through the projection function represented in eq. (9). The density of the element is 
evaluated taking into account the influence of the nodes within a circle Ωel of radius rmin through the distances of 
the nodes within the circle to the centroid of the element. 

  1 e  eel
el el

β µ βρ µ− −= − +  (9) 

Where: β is the parameter that controls the curvature of the function; µel is the linear projection function, given by 
eq. (10), 
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Where: µel is the linear projection function associated to element el; rmin is the radius of the region Ωel, S is the set 
of nodes belonging to Ωel; xj is the design variable associated with the nodes belonging to S; w is the weight of 
node j in relation to the centroid of the element el erj distance from node j to the centroid of the element el. 
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An additional instability present in topology optimization problems in which eigenvalues and eigenvectors 
are the objective or the constraint of the optimization is related to modes of vibration in void regions of the design 
domain. These vibration modes spuriously influence the final solution of the optimization process. In the classic 
SIMP model, the mass is not penalized as the stiffness is. Thus, the ratio between mass and stiffness is very high 
for small densities. The solution presented by Pedersen [10] is to change the penalty scheme for intermediate 
densities, changing the penalty for densities less than 0.1, as shown in eq. (12). 
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Tcherniak [11] complemented the proposal presented by Pedersen [10] and changed not only the rigidity 
penalty, but the mass penalty, according to eq. (13). Tcherniak [11] adopted 0.15 for ρthr. 
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Where: ms is the mass for solid material; ρthr is the density chosen as a parameter, and me is the new mass of the 
element el. 
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4  Examples and results 

The first example in this section presents the results obtained for a beam under free vibration. Two support 
conditions are analyzed: studded at the left side and simply supported at the right side; and simply supported at 
both sides. The second example is a cantilever beam under forced vibration. In all examples in this section the 
Young’s module is 105 and the Poison ratio 0.3. 

4.1 Structure under free vibration 

In the next two examples the length of the beam (L) is 6 times its height (H), discretized in a mesh with 
240x40 elements. Continuity was applied as proposed in [12], for a fixed β equal to 15 and p varying from 1 to 
10. 

The first example is the simple supported beam presented in Fig. 1 with results presented in Fig. 2. 

 

Figure 1. Structural domain for the simple supported beam 

 

Figure 2. Final topology for the simple supported beam under free vibration (mesh with 240x40 elements and 
rmin = 4 elements) 

The natural frequency for the topology presented in Figure 2 is 0,176 rad/s and the rate of elements presenting 
intermediate densities is 16.69%. 

 
The second example is the cantilever – supported beam presented in Fig. 3 with results presented in Fig. 4. 

 

Figure 3. Structural domain for the cantilever – supported beam 

H

L = 6 H

H

L = 6 H
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Figure 4. Final topology for the cantilever –supported beam under free vibration (mesh with 240x40 elements 
and rmin = 4 elements). 

The natural frequency for the topology presented in Figure 4 is 0.237 rad/s and the ratio of elements 
presenting intermediate densities is 38.39%. The change in support conditions substantially affected the rate of 
elements with intermediate densities. 

4.2 Structure under non-damped forced vibration 

A cantilever beam with length (L) 1.5 times its height (H), discretized in a mesh with 60x40 elements. 
Continuity was applied as proposed in [7], for p varying from 1 to 3 and β = 1 in the first step and β varying at 
each iteration k as follows: β = 1.1 + k. 

The cantilever beam presented in Fig. 5(a) was analyzed for three frequencies: 0.1 rad/s (Fig. 5(b)); 5 rad/s 
(Fig. 5(c)); 10 rad/s (Fig. 5(d)). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5. Cantilever beam under forced vibration: (a) structural domain; (b) topology for ω = 0.1 rad/s; 
(c) topology for ω = 5 rad/s; (d) topology for ω = 10 rad/s. 

The topology obtained for ω = 0.1 rad/s is consistent with that obtained for the structure under a static load, 
which validates the implementation. The results in Fig. 5(c) and 5(d) shows the influence of the frequency over 
the final topology. All the results present no elements with intermediate densities. 

H/2

L = 1.5 H

H/2
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5  Conclusions 

In the application of the Heaviside projection to a free vibration problem the solutions presented intermediate 
densities, which was expected since a relatively low value was adopted for the parameter β. Further studies are 
needed regarding the use higher values for this parameter. The rate of intermediate densities is affected by the 
support conditions. 

The results obtained for non-damped forced vibration were satisfactory. The final topologies obtained are 
free of intermediate density. As expected, the final topologies were noticeable different when changing the value 
of the excitation frequency of the harmonic force. 
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