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Abstract. Projection schemes are used in topology optimization to provide minimum length scale on structural 
members in topology optimization solutions. On the other hand, inverse schemes provide control over the 
minimum size of holes in the resultant topology. Literature provide several applications of both schemes associated 
to regular meshes using quadrilateral finite elements to discretize the design domain. Besides, in the last decade 
polygonal element has been applied to solve topology optimization problems, providing better representation for 
the contour of the design domain. This paper applies the concepts of both direct and inverse schemes to 
unstructured polygonal finite element meshes. Each projection is made via mesh independent functions based upon 
the minimum length scale for either structural members or holes. A linear and a Heaviside projection function are 
applied to both schemes. Numerical examples are presented to demonstrate the various features of the projection-
based techniques. 
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1  Introduction 

Polygonal finite elements are used in topology optimization to provide solutions with unstructured meshes 
in non-regular domains [1]. This approach was a natural expansion of the hexagonal elements [2] proposed in 
order to avoid checkerboard patterns in the optimization solutions. Educational codes for generating unstructured 
meshes with polygonal elements and for the topology optimization process itself can be found in [3] and [4], 
respectively. The natural configuration of the meshes, with elements sharing at least one edge, prevents the 
appearance of checkerboard solutions. However, other numerical instabilities characteristic of the density method, 
such as mesh dependence, are still present in the solutions. 

Techniques used to impose manufacturing control to the solutions also seem to provide mesh independency. 
Guest, Prévost and Belytschko [5] used an approach in which nodal design variables are related to the element 
densities through projection functions. This kind of approach provide control over the thickness of the resulting 
structural elements. Almeida, Paulino and Silva [6] introduced an inverse projection scheme providing control 
over the size of the voids in the solutions. Both works used structured meshes with rectangular 4-node plane 
elements. However, both approaches can be easily extended to polygonal elements. 
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Both linear and non-linear functions can be applied to projection schemes. A high percentage of intermediate 
densities in the final solution is found when using linear projection functions, especially in the inverse scheme. 
The nonlinear projection functions, in turn, provide solutions with greater physical consistency [5, 6]. Guest, 
Prévost and Belytschko [5] used a smoothed Heaviside function to obtain solutions with a low percentage of 
intermediate densities. Almeida, Paulino and Silva [6] used quadratic functions associated with the direct and 
inverse projection scheme. Due to its more aggressive behavior, the regularized Heaviside function seam to 
provide solutions closer to the desired solid void pattern. This work investigates a Heaviside function for the 
inverse projection scheme and its application to unstructured meshes using polygonal elements. 

2  Unstructured meshes using polygonal finite elements 

Talischi, Paulino and Le [2] used regular hexagonal finite elements to treat checkerboard instability. The 
formulation was later expanded by Talischi et al. [1] working with irregular polygonal finite elements with a 
variable number of sides. The mesh generation process, described by Talischi et al. [3], it is based on Voronoi 
diagrams, a type of discretization of areas in convex polygonal domains. Once the mesh is obtained, the stiffness 
matrices of each element can be written with the aid of the Wachpress shape functions [7, 8]. It is necessary to use 
a generic numerical integration process to obtain the stiffness matrices of generic polygonal finite elements. 
Sukumar and Tabarraei [7] proposed the discretization of each polygonal element in triangular subdomains. Thus, 
integration can occur separately in each triangular domain and added later, a process widely discussed in the 
literature. 

The simple use of polygonal finite elements associated with the density method prevents the appearance of 
checkerboard patterns and other numerical instabilities [1, 2]. The wide use of rectangular elements in optimization 
problems is due to its simplicity. However, these elements are not suitable for non-regular domains, as those 
illustrated in Fig. 1. Besides, the discretization of non-regular domains, especially the convex ones, is relatively 
simple in meshes of polygonal elements, requiring no additional efforts between meshing a rectangular or circular 
domain, for example [3]. 

 

Figure 1. Non-regular domains discretized in polygonal elements: a) 1000 elements; b) 3000 elements. 

3  Projection schemes 

Projection schemes in optimization problems are techniques for projecting nodal design variables onto finite 
elements in order to obtain the densities used in structural analysis. Thus, the density, ρ e, of each element e is 
evaluated from a subset (Se) of the design variables associated with a set of nodes enrolled in a circular domain 
(Ωe) of radius rmin, whose center coincides with the centroid of the reference element e, as shown in Fig. 2. The 
influence of nodal variables on the element densities is weighted by the distance between the position of each node 
(y j) and the position of the centroid of the element (y e), according to eq. (1). 
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Figure 2. Projection scheme. 
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The influence of nodal design variables on the element densities is computed using a projection function (w). 
The direct function used by Guest, Prévost and Belytschko [5] is presented in eq. (3). In this case, the nodes closest 
to the centroid of the element e have a greater influence on the composition of the element density ρ e. Similarly, 
Almeida, Paulino and Silva [6] proposed the inverse projection function in eq. (4). In contrast to the direct case, 
the inverse projection function gives more weight to the elements closer to the border of Ωe and less to those close 
to y e. 
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Linear projection functions eliminate mesh dependency and other instabilities, such as checkerboard patterns. 
However, the percentage of intermediate densities is relatively high, especially when large values are adopted for 
the projection radius. Thus, Guest, Prévost and Belytschko [5] proposed a projection function presented in eq. (5) 
that penalizes elements with intermediate densities based on a regularization of the Heaviside function. By this 
proposal, µ e is the linear projection given in eq. (1). 

 ( ) ( )1 e e
e e

ee eβ µ βρ µ
Ω− Ω −= − +

x x  (5) 

Where: β controls the softness of the projection curve and x Ω e is the subset of design variables in Ω e.  
It is important to note that the larger β is, the closer the function (5) is to the Heaviside function and that 

β = 0 conduces to the linear projection scheme described in eq. (1). 
This work proposes a Heaviside approach for the inverse projection scheme, using the projection function 

(5) associated to the inverse projection. 
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4  Formulation 

The formulation of the topology optimization problem is written as a material distribution where void and 
solid regions are represented by 0 and 1, respectively. The SIMP model is used to relate the element densities to 
the stiffness parameter, in this case the Young's module, while penalizing the intermediate densities. A small value 
(ρmin) is introduced as a lower limit for the densities in order to prevent singularity problems in the stiffness matrix 
caused by null densities, providing a lower limit to de design variable (xmin) as shown in eq. (7). Therefore: 
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Where: c is the structural mean compliance; x is the design variables vector; f is the force vector; u is the 
displacement vector; K is the stiffness matrix; ρ e is the density associated to element e; Ω is the design domain; 
v  e is the volume of element e; V is the prescribed material volume; xmin is a small positive value given by eq. (7); 
x j is the design variable j; n is number of design variables. 
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The sensitivity of the objective function is given by eq. (8): 
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Where: p is penalization factor of the SIMP model; ue is the displacement vector of element e; k0
e is the basic 

stiffness matrix of element e, with the Young's module removed. 
Petersson and Sigmund [9] proposed a technique to avoid local minimums during the optimization process. 

The continuation technique consists of a gradual increase in the penalty coefficient p of the SIMP model that 
governs the mechanical behavior of the structural finite elements. The original work proposed to begin at p = 1 
with increments of Δp = 0.5, with maximum value p = 5. For each p, the optimization process is carried out until 
a local convergence. 

Guest, Prévost and Belytschko [5] used continuation with both the linear and Heaviside functions. In the case 
of the Heaviside function, the value of β was kept fixed during the continuation process. However, Li and 
Khandelwal [10]  tested several variations of the continuation method to the nonlinear projection scheme and 
concluded that maintaining a fixed value for β is not a good strategy. The authors proposed that initially the 
coefficient p varies from 0 to 3 keeping β = 0, which is equivalent to the linear projection function. From this point 
on, β varies adopting βmax = 200. 

In the present work, the proposal by Li and Khandelwal [10] for the continuation technique was adapted in 
order to reduce the processing time. In step 1, the process starts with p = 1 and β = 0, p is increased by Δp = 0.5 
until the maximum value (p = 3). In this stage, β remains constant. Step 2 starts after obtaining the linear results. 
It is fixed p = 3 and β is increased according to eq. (9) up to β = 150. A convergence criterion on displacements 
was adopted during step 1. During step 2, a convergence criterion is based on variation of the percentage of 
intermediate densities. Convergence, in both cases, occurs when a tolerance of 0.1% is reached. The final topology 
is obtained after the percentage of intermediate densities is below 1% or after the end of the optimization with 
β = 150. 
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5  Numerical results 

All the following examples were discretized in meshes with 10,000 polygonal finite elements. Young Module 
E = 1, Poisson's ratio ν = 0.25 and thickness t = 1 were adopted. The problem described in (6) is solved with 
optimality criteria method and the percentage of intermediate densities of the optimized structures (Di) is evaluated 
by eq. (10), as proposed by Sigmund [11].  

 1
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A computational code was developed in Python 3.8.5 and Julia 1.4.2. The results were plotted using the 
colormap jet available in the matplotlib 3.3.0 library. In order to simplify the text, the following nomenclatures are 
adopted for the methods used: direct linear projection scheme (PS-DL), inverse linear projection scheme (PS-IL), 
direct Heaviside projection scheme (PS-DH) and scheme inverse Heaviside projection (PS-IH). 

5.1 Example 1 

The first example is the cantilever beam shown in Fig. 3a. Although there is no checkerboard pattern in the 
solution presented in Fig. 3b, obtained with no projection schemes, the topology presents several thin structural 
elements, which may be a huge problem in the manufacturing process. In the solution is obtained applying any 
projection scheme the thin elements are eliminated, which delivers a considerably simplified final topology. In all 
cases a projection radius rmin = 0.04 was adopted. 

 

 
Figure 3: Example 1 – cantilever beam: a) structural domain; b) topology obtained with no filter applied; 

c) topology obtained applying PS-DL; d) topology obtained applying PS-DH; e) topology obtained applying PS-
IL; f) topology obtained applying PS-IH. 

 
The final topologies for PS-DL and PS-IL, shown in Fig.3c and Fig. 3e, are consistent with those found by 

Almeida, Paulino and Silva [6]. Fig. 3c shows the solution to the problem with the direct linear projection scheme 
(PS-DL). It is remarkable the high percentage of intermediate densities present in the solution. However, as shown 
in Fig. 3d and Tab. 1, the application of the Heaviside projection function (PS-DH) reduced this percentage 
significantly. A similar behavior was observed with the inverse projection scheme. For the linear projections (PS-
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DL and PS-IL), the transition range between solid and empty elements observed is larger in the inverse scheme 
(Fig 3e) than in the direct scheme (Fig 3c). Some intermediate densities still remain in the topology obtained by 
the direct scheme using the Heaviside projection function (Fig. 3d). The topology obtained by the inverse scheme 
using the Heaviside projection function (Fig. 3f) no significantly intermediate densities are observed. 

Table 1. Intermediate density for example 1 

Projection scheme Projection function Di (%) 
No projection ---------------- 0.49 

Direct Linear 18.90 
Direct Heaviside 3.12 
Inverse Linear 23.02 
Inverse Heaviside 0.99 

 

5.2 Example 2 

In order to show the applicability of the polygonal elements, the solutions for the hook problem analyzed by 
Talischi et al. [4] are presented here applying the inverse projection scheme. The problem geometry is presented 
in Fig. 4 and the correspondent values are presented in Table 2. In all cases a projection radius rmin = 2 was adopted. 

 

 
Figure 4: Example 2 – Hook. 

 
As in example 1, the solution without a filter (Fig. 5a) presents lots of thin structural elements. Turning this 

solution not suitable for practical applications. By applying PS-IL (Fig. 5b) a simpler topology was obtained, but 
the solution in Fig 5b still presents a high percentage of intermediate densities. By applying PS-IH (Fig. 5c) the 
simplicity of the final topology was maintained and the percentage of intermediate densities in the final solution 
was considerably reduced. 

Table 2. Intermediate density for example 2 

Projection scheme Projection function Di (%) 
No projection ---------------- 0.90 

Direct Linear 28.84 
Direct Heaviside 1.30 
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Figure 5: Example 2 – Hook: a) no filter; b) PS-IL; d) PS-IH. 

6  Conclusions 

The use of polygonal finite elements with projection schemes proved to be an efficient way to solve topology 
optimization problems in complex domains. The solutions obtained present no mesh dependency nor checkerboard 
patterns. The dimensions of the structural elements or voids in the final topology can be controlled in order to 
obtain better solutions from a constructive point of view. 

The Heaviside projection function for the inverse projection scheme produced good solutions with the 
polygonal elements. It is important to note that these results were possible due to the implementation of the 
modification of the continuity technique, applying variations in p and β. Finally, the use of polygonal finite 
elements allows the discretization of problems with considerably complex extended domains 
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