
 
 

CILAMCE 2020 

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Foz do Iguaçu/PR, Brazil, November 16-19, 2020 

A von Mises stress-based topology optimization applying the standard 

finite-volume theory for continuum elastic structures 

Marcelo Vitor Oliveira Araujo1, Eduardo Nobre Lages1, Márcio André Araújo Cavalcante2 

1Center of Technology, Federal University of Alagoas 

Av. Lourival Melo Mota, Tabuleiro do Martins, Maceió, 57072-900, Alagoas, Brazil 

marcelo.vitor.o.a@gmail.com, enl@ctec.ufal.br 
2Campus of Engineering and Agricultural Sciences, Federal University of Alagoas 

BR-104, Rio Largo, 57100-000, Alagoas, Brazil 

marcio.cavalcante@ceca.ufal.br 

Abstract. Topology optimization algorithms want to establish the best material distribution inside of an analysis 

domain. In those optimization problems, usually there are some numerical problems to be overcome, such as the 

checkerboard pattern, mesh dependence, local minima, and occurrence of gray regions. This paper addresses a 

new topology optimization technique, where the objective is to minimize the equivalent average von Mises stress 

subject to a volume constraint and to apply the standard finite-volume theory for elastic stress analysis. The solid 

isotropic material with penalization (SIMP) approach is employed to avoid discrete optimization problems. The 

proposed optimization problem has shown efficiency, avoiding the occurrence of numerical instabilities, such as 

checkerboard pattern, mesh dependence, and local minima, when a sensitivity filter is employed. In the absence 

of filtering techniques, the proposed approach has shown efficiency by producing checkerboard-free optimized 

topologies with fewer bars, more robust bars, and well-defined “black and white” designs. 
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1  Introduction 

Topology optimization seeks to establish the best material distribution inside an analysis domain and has 

been one of the main fields in structural analysis in the last decades. Since the pioneering work of Michell [1] and 

the reconstruction initiated by Bendsøe and Kikuchi [2], topology optimization has frequently been used to define 

the stiffest structure by minimizing the structural compliance. However, this is not the objective of most high-

performance structural problems. A more realistic option would be to optimize the stress distribution inside the 

analysis domain by minimizing the equivalent von Mises stress subject to a volume constraint. 

In a topology optimization problem, the interest is in defining which points of the analysis domain should be 

material or void, generating a “black and white” design. Therefore, the structural material distribution is obtained 

by a binary “0-1”, where 0 indicates void and 1 indicates the presence of material. This kind of topology 

optimization leads to an integer programming problem, which has been shown an unfeasible approach. However, 

the material distribution can be also defined in terms of a continuum function, which defines the material relative 

density and can assume any real value between approximately 0, indicating void, and 1, indicating solid. In this 

case, the intermediate values of relative density must be avoided by penalization techniques. 

An alternative technique to solve this problem is the solid isotropic material with penalization (SIMP) 

approach, which penalizes the intermediate values of relative densities to obtain a “black and white” project. In 

this method, the material properties are modeled by the element relative density raised to a certain power, which 

is recommended to be higher than 3, Bendsøe and Sigmund [3]. Although high penalty factors help to produce a 

well-defined “black and white” design, when the penalty factor is higher than one, in the SIMP approach, the 

optimization problem becomes nonconvex and there is no guarantee of a unique solution, Christensen and 

Klarbring [4]. 

Since the pioneering work of Bendsøe and Kikuchi [2] in the homogenization method of topology 

optimization, the finite element-based strategy for structural analysis has received wide attention and experienced 
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considerable progress, Wang and Wang [5]. An alternative technique to this method is the finite-volume theory, 

which employs the volume-average of the kinematic and static fields and imposes the boundary and continuity 

conditions in an averaged-sense. In addition, the satisfaction of differential equilibrium equations at the subvolume 

level, concomitant to kinematic and static continuity conditions established in a surface-averaged sense between 

common faces of adjacent subvolumes, are features that distinguish the finite-volume theory from the finite 

element method. 

This contribution addresses a new approach for topology optimization based on the standard finite-volume 

theory, where the objective function is defined as the minimization of the structural equivalent von Mises stress. 

Comparison results between the minimization of equivalent von Mises stress and similar approaches based on the 

compliance minimization problem are provided, which demonstrate the efficiency of the proposed topology 

optimization technique. 

 

Figure 1. Discretized analysis domain and global coordinate system (left) and subvolume and local coordinate 

system (right) 

2  Finite-volume theory 

Figure 1 presents the adopted rectangular domain in 𝑥1 − 𝑥2 plane with 0 ≤ 𝑥1 ≤ 𝐿 and 0 ≤ 𝑥2 ≤ 𝐻, which 

is discretized in 𝑁𝛽 horizontal subvolumes and 𝑁𝛾 vertical subvolumes. The subvolume dimensions are 𝑙𝑞 and ℎ𝑞 

for 𝑞 = 1, … ,𝑁𝑞, where 𝑁𝑞 = 𝑁𝛽 ∙ 𝑁𝛾 is the total number of subvolumes. Following Cavalcante and Pindera [6], 

the displacement of a subvolume 𝑞 can be approximated by an incomplete quadratic version of Legendre 

polynomial expansion in the local coordinate system as follows: 
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where 𝑖 = 1,2 and 𝑊𝑖(𝑚𝑛)
(𝑞)

 are unknown coefficients of the displacement field. 

2.1 Local stiffness matrix 

Following Bansal and Pindera [7], the surface-averaged displacement components of a generic subvolume 

can be defined as 

 

�̅�𝑖
(1,3) =

1

𝑙𝑞
∫ 𝑢𝑖 (𝑥1

(𝑞)
, ∓

ℎ𝑞

2
)𝑑𝑥1

(𝑞)
𝑙𝑞
2

−
𝑙𝑞
2

�̅�𝑖
(2,4) =

1

ℎ𝑞
∫ 𝑢𝑖 (±

𝑙𝑞

2
, 𝑥2

(𝑞)
)𝑑𝑥2

(𝑞)
ℎ𝑞
2

−
ℎ𝑞
2

, (2) 

where the superscript indicates the subvolume face number, indexed as illustrated in Fig. 2(a). 

Substituting eq. (1) into eq. (2), eight expressions are obtained for the surface-averaged displacements, which 

can be organized as follows: 

 �̅�(𝑞) = 𝑨(8×8)
(𝑞)

𝑾(𝑞) + 𝒂(8×2)
(𝑞)

𝑾(00)
(𝑞)

, (3) 

where �̅�(𝑞) is the local surface-averaged displacement vector, 𝑾(𝑞) is the vector containing the first and second 

order unknown coefficients and 𝑾(00)
(𝑞)

 is the vector containing the zeroth order unknown coefficients. 𝑨(8×8)
(𝑞)

 and 
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𝒂(8×2)
(𝑞)

 are matrixes that depend on the geometric features of the subvolume 𝑞. 

 

Figure 2. Surface-averaged quantities: (a) surface-averaged displacements and (b) surface-averaged tractions 

Based on linear elastic stress analysis, the surface-averaged traction components can be evaluated as 
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Considering linear elastic isotropic materials, eight expressions for the surface-averaged tractions can be 

obtained in terms of the unknown coefficients 

 �̅�(𝑞) = 𝑩(8×8)
(𝑞)

𝑾(𝑞), (5) 

where 𝑩(8×8)
(𝑞)

 is the local surface-averaged traction vector, Fig. 2(b). 

The local stiffness matrix can be established as 
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= ℎ𝑞 are the faces’ lengths of a generic subvolume 𝑞. 

3  Topology optimization problem 

3.1 Compliance minimization problem 

The total strain energy of a structure can be defined as 

 𝑈 =∭
1
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𝝈𝑇𝜺 𝑑Ω =∭

1

2Ω
𝜺𝑇𝑪𝜺 𝑑Ω, (7) 

where 𝝈 is the stress tensor, 𝜺 is the strain tensor and 𝑪 is the stiffness tensor. Considering the assumptions of the 

elasticity theory and the displacement field approximation presented in eq. (1), the local strain tensor is given as 
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where 𝑬(𝑞) (𝑥1
(𝑞)
, 𝑥2
(𝑞)
) is the kinematic matrix that relates the strain tensor components with the unknown 

coefficients. 

Therefore, the specific strain energy can be evaluated as 
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where 𝑫(𝑞) = ∫ ∫
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. The total strain energy is obtained considering the 

individual contribution of each subvolume by 

 𝑈 =∭ �̅�
Ω

𝑑Ω = ∑ 𝑈(𝑞)
𝑁𝑞
𝑞=1 . (10) 

The topology optimization problem based on the power-law approach for compliance minimization can be 

written as 

 

{
 
 

 
 min 𝑐(𝝆) = ∑ (𝜌𝑞)

𝑝
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, (11) 

where 𝑉(𝝆) and �̅� are the material and reference domain volumes, respectively, 𝝆 is the relative density tensor, 𝑝 

is the penalty factor, 𝑓 is the prescribed volume fraction and 𝜌𝑚𝑖𝑛 is the minimum relative density to avoid 

singularity in the stiffness matrix. This optimization problem is solved using the optimality criteria (OC) method 

and the damping factor is adjusted to avoid the oscillatory phenomenon, which is caused by the low-density regions 

in the optimized structure. 

3.2 Average von Mises stress minimization problem 

The average equivalent von Mises stress of a structure can be evaluated by 

 �̅�𝑣(𝝆) =
1

𝑉
∭ 𝜎𝑣(𝒙, 𝝆)Ω

𝑑Ω =
1

𝑉
∑ ∭ 𝜎𝑣

(𝑞)
(𝒙(𝑞), 𝜌𝑞)V𝑞

𝑑V𝑞
𝑁𝑞
𝑞=1 = ∑ 𝑓𝑞�̅�𝑣

(𝑞)
(𝜌𝑞)

𝑁𝑞
𝑞=1 , (12) 

where 𝜎𝑣
(𝑞)

 and V𝑞 are the von Mises stress and volume of a subvolume 𝑞, respectively, 𝑓𝑞  is the subvolume volume 

fraction and �̅�𝑣
(𝑞)(𝜌𝑞) is the average von Mises stress in the subvolume 𝑞, which is given by 
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Considering the plane stress state, the von Mises stress of the subvolume 𝑞 is given by 
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Thus, the local von Mises stress can be obtained by 
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where 𝑪(𝑞)(1) is the stiffness tensor correspondent to a unitary relative density. Finally, the proposed topology 

optimization problem can be written as 

 

{
 
 

 
 min �̅�𝑣(𝝆) = ∑ 𝑓𝑞�̅�𝑣
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. (17) 

In this case, the double integration presented in eq. (13) can be solved by employing the Simpsons’ rule for 

3 × 3 integration points. Therefore, the optimization presented in eq. (17) can be solved using the OC method, 

where the objective function gradient is given by 
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3.3 Mesh-independency filter 

Following Sigmund [8], to avoid the occurrence of mesh dependence, it is suggested to modify the subvolume 

sensitivities in some approaches using the following expression: 
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1
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𝑒=1 , (19) 

where �̂�𝑒 is the convolution operator (weighting function) given as 

 �̂�𝑒 = 𝑅 − dist(𝑞, 𝑒)  for dist(𝑞, 𝑒) ≤ 𝑅 and �̂�𝑒 = 0 otherwise, (20) 

where dist(𝑞, 𝑒) is the distance between the subvolume center of 𝑞 and 𝑒. To consider only the contributions of 

neighbor subvolumes (with shared nodes), it is adopted a filter radius of 𝑅 = 1.01√𝑙𝑞2 + ℎ𝑞2. 

4  Results and discussion 

The cantilever beam, shown in Fig. 3, is a classical problem in topology optimization. Here, this example is 

employed for efficiency comparison between different topology optimization approaches based on the standard 

finite-volume. For the different topology optimization approaches, it is used the continued penalization scheme, 

where the penalty factor increases gradually (∆𝑝 = 0.5) from 1 to 4, as suggested by Talischi et al. [9]. As a 

criterion of convergence, the maximum tolerance for the change in design variables is set up as 1%. 

 

Figure 3. Cantilever beam 

The damping factor is adjusted, for the compliance minimization problem without filtering, to avoid the 

oscillatory phenomenon during the optimization process. The proposed optimization problem consists of 

minimizing the structural compliance or the average von Mises stress subject to a volume constraint of 40% of the 

total volume. The computational environment, in terms of programming language and machine, can be described 

as MatLab R2018a/Intel® CoreTM i7-8550U CPU @ 1.80 GHz 1.99 GHz/16.0 GB RAM/64-bits. 

Figure 4 shows the optimized topologies for each topology optimization approach, considering the absence 

of filtering technique. The approach based on the compliance minimization problem has presented the same local 

minima and mesh dependence issues presented in Araujo et al. [10]. In this case, the damping factor is adjusted to 

1 2.6⁄  to avoid divergence during the optimization process, as suggested by Araujo et al. [10]. For the average 

stress minimization approach, the damping factor is set up as 1 2⁄ , providing a fast convergence to the optimization 

problem. Similarly, the topology optimization problem based on the averaged stress minimization has presented 

some numerical instabilities, such as mesh dependence and local minima, however, the obtained “black and white” 

designs are free of intermediate values of relative density, and present fewer bars and thicker bars. Additionally, 

Fig. 5 presents the von Mises stress distributions for the optimized topologies. As expected, the topology 

optimization technique based on the averaged von Mises stress minimization has reduced the stress concentration 

along the slender bars, especially for the finest mesh. 
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Figure 4. Optimized topologies without filtering technique 

 

Figure 5. Von Mises stress distributions (MPa) of the optimized topologies obtained without filtering technique 

Similarly, Fig. 6 presents the optimized topologies obtained for the proposed approaches employing the 

sensitivity filter. In the scenario of filtering technique, the adopted damping factor is 1 2⁄ , as recommended for 

faster convergence, Araujo et al. [10]. In fact, the topology optimization problem based on the average stress 

minimization has presented less mesh sensitivity. In addition, this approach has provided optimized topologies 

with fewer and more robust bars, which controls better some numerical issues such as mesh dependence and local 

minima. Although the topology optimization problem for compliance minimization, considering filtering, has 

presented more slender bars, the optimized topology obtained by this approach has shown the same force-

displacement curve of the topology obtained employing the average stress minimization problem, for the finest 

mesh, as shown in Fig. 8. At the same time, Fig. 7 shows the von Mises stress distributions obtained for the 

optimized topologies presented in Fig. 6, providing less stress concentration when the average stress minimization 

problem is employed for the finest mesh. 

 

Figure 6. Optimized topologies with filtering technique 
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Figure 7. Von Mises stress distributions (MPa) of the optimized topologies employing the filtering technique 

 

Figure 8. Force-displacement diagram 

Table 1 presents the investigated numerical aspects, such as the number of iterations, computational cost, von 

Mises average stress, and compliance. In fact, the approach employing the average von Mises minimization with 

filtering has presented the fastest convergence by reducing the total number of iterations, while the approach based 

on the compliance minimization problem, in the absence of filtering technique, has presented the highest 

computational cost and total number of iterations, for the finest mesh. Although the average von Mises stress for 

the stress-based topology optimization, considering filtering, has been higher than the approach based on the 

compliance minimization problem, this approach has optimized the structural compliance, for the finest mesh. 

Table 1. Convergence analysis 

Analysis Mesh 
Number of 

Iterations 
Processing Time 

Average von 

Mises stress (MPa) 

Compliance 

(MJ) 

Compliance (No 

filtering) 

70 × 35 156 29 min 21s 2.457 4.685 

150 × 75 329 6 h 2 min 40 s 2.428 4.484 

230 × 115 630 54 h 5 min 35 s 2.417 4.335 

von Mises (No 

filtering) 

70 × 35 198 1 min 3 s 2.464 5.547 

150 × 75 424 3 h 8 min 19 s 2.446 5.358 

230 × 115 450 21 h 26 min 51 s 2.435 5.348 

Compliance 

(Filtering) 

70 × 35 327 35 min 52 s 2.462 4.903 

150 × 75 523 7 h 2 min 36 s 2.447 4.441 

230 × 115 569 44 h 9 min 25 s 2.427 4.375 

von Mises 

(Filtering) 

70 × 35 125 4 min 41 s 2.472 4.928 

150 × 75 216 1 h 52 min 2.445 4.458 

230 × 115 399 18 h 25 min 17 s 2.437 4.352 
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5  Conclusions 

The new topology optimization for the average equivalent von Mises stress minimization problem based on 

the standard finite-volume theory has shown to be efficient, especially when a sensitivity filter is employed. This 

technique could produce efficient optimized topologies, where the mesh dependence and local minima issues are 

better controlled when compared to the compliance minimization problem. In addition, this technique could reduce 

the total required number of iterations, providing the fastest convergence for the analyzed approaches. 

In the absence of filtering techniques, the average von Mises stress minimization problem has obtained 

optimized topologies with fewer bars and more robust bars, where the “black and white” designs are composed of 

approximately 0 or 1 densities, which is a desired feature in topology optimization problems. Based on the 

presented results, the continuation of this investigation is justified by exploring the most different aspects of the 

finite-volume theory and analyzing other examples. 
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