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Abstract. In this work, the vibration control of a coupled wind tower – nacelle – blades system subjected to 

external lateral loads and rotating blades is studied. To model the tower and blades, the non-linear Euler-Bernoulli 

beam theory and the linear Euler-Bernoulli beam, respectively, are considered. The structural control device 

studied is an inverted pendulum tuned mass damper (IPTMD) located at the top of the tower. The Rayleigh-Ritz 

method, together with Hamilton principle, is applied to obtain a set of nonlinear ordinary differential equations of 

motion which are, in turn, solved by the Runge-Kutta method. First, the dynamic instability is studied when 

rotating blades are considered, where it is possible to observe veering phenomena. In addition, the optimum 

parameters of the IPTMD are obtained. The results show a good performance achieved by the vibration control 

adopted to the dynamical behavior. 
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1  Introduction 

Slender structures such as wind towers, are very flexible and can experience large displacements when 

subjected to dynamical external forces considering the occurrence of coupling between tower and blades. One 

important way to reduce such excessive vibrations is to apply vibration control to these structures. One alternative 

vibration control device is the tuned mass damper (TMD), which is capable of absorbing some of the structural 

vibration energy, thus reducing vibration of the main structure (Song and Dargush [1]). The TMD is usually a 

spring-mass-damper system and its influence in wind turbines was investigated by several autors such as Murtagh 

et al. [2], Farsadi and Kayran [3], Zuo, Bi and Hao [4].  

However, the TMD may have a pendular shape as studied by Orlando [5], Guimarães, Morais and Avila [6], 

Sun and Jahangiri [7]. The pendulum geometry has practical advantages since its frequency can be tuned changing 

the cable length. In this work, an inverted pendulum geometry is considered. This geometry has already shown 

good results in previous studies such as in Resende, Morais and Avila [8], where they performed an experimental-

numerical study of the inverted pendulum performance in a one-degree-of-freedom structure. 

The wind turbine is composed of a tower coupled to the nacelle and rotating blades at the top. The 

mathematical model studied both tower and blades using the non-linear Euler-Bernoulli beam theory. Then, the 

Rayleigh-Ritz method, together with Hamilton principle, is applied to study the structure response. 

2  Mathematical formulation 

The tower-nacelle-blade system model is shown in Fig. 1. The tower has height H, density ρT, area AT, 

Young’s modulus ET, moment of inertia IT, z is the spatial coordinate along the length and v(z, t) is the tower 
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transverse displacement. The blade has length L, density ρ, area A, Young’s modulus E, moment of inertia I and 

rotates with speed Ω; x is the spatial coordinate and u(x, t) the transverse displacement. At the top of the tower, 

there is a tip mass M0 representing the nacelle. The system is subjected to external lateral load Fv(t). 

Figure 1. Wind turbine model 

2.1 Energy Functional 

The strain energy for the tower-blade system is given by (Orlando [5] and Kang [9]): 
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An external harmonic force is applied at the top of the tower, where F is the amplitude of the force and ωf is 

the frequency of the force. Thus, the work done by this force can be expressed as. 

sin( ) ( , )T f z H
W F t v z t


    (2) 

In addition, since the blade rotates with a frequency Ω, it is necessary to consider a centrifugal force (Fc) at 

the blade. This force acts along the blade’s length and using the dummy variable s, Meirovitch [10] proposed 

equation (3) to calculate it, the work done by this force is given by equation (4). 

2( )

L

c

x

F x As ds    (3) 

2 4

0

1 1
( )

2 8

L

c

du du
W F x dx

dx dx

    
           
  (4) 

In order to obtain the energy functional, the kinetic energy of both blade and tower has to be defined. Only 

the translational kinetic energy is considered, thus is given by: 
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The boundary conditions of the tower and blade are the same of a cantilever beam, therefore displacement 
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and slope are zero at one end and at the other end shear force and moment are zero. Though, due to the coupling 

between blade and tower, a shear force appears in this region. The work Wac of this force can be calculated by 

equation (6), furthermore, it is important to note that the blade displacement is relative to the tower displacement, 

since the blade is fixed to the end-tip of the tower, as shown by equation (7), which changes the expression for the 

kinetic energy from (5) to (8). 

2 2

2 2

0

( , ) ( , )
( , )

L

ac z H

z H

v z t u x t
W AL A dx v z t

t t 



 
 

     
  
 

  (6) 

( , ) ( , ) ( , )total

z H
u x t u x t v z t


   (7) 

2 2

0

2 2

0

0

1 ( , ) ( , ) ( , ) 1 ( , )

2 2

1 ( , ) 1 ( , )

2 2

L

z H
z H

H

T T

z H

u x t u x t v z t v z t
T A A A dx

t t t t

v z t v z t
A dz M

t t






 
               

       
 

    
     

    





 (8) 

Once the energy terms are defined, it is possible to obtain the energy functional (LS): 
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2.2 Inverted Pendulum 

An inverted pendulum is placed at the top of the tower to act as a TMD (Fig. 2), its behavior is similar to a 

regular pendulum, however it requires shorter lengths to achieve equivalent performances. The pendulum has 

length l, mass m, rotational spring KP and the rotational displacement is given by θ.  

  
(a) (b) 

Figure 2. (a) Detail of structure with an inverted pendulum (b) inverted pendulum deformed shape 

From the settings of the height h1 (10) and velocity vp (11), it is possible to define the energy functional given 
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by (12), which must be added to the expression for the system functional energy. 
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2.3 Modal solution 

The Rayleigh-Ritz method is applied in order to obtain the structure response. Thus, the displacements of 

both blade and tower are assumed as: 
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where aj and bj are time dependent coefficients, n is the number of modes of the solution and ϕj(x) and ψj(z) 

are the admissible functions, which satisfy the boundary conditions, they are given by: 
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The Hamilton’s principle is then applied, as shown by Eq. (15), to get a set of nonlinear differential equations 

of motion that can be solved by applying the Runge-Kutta method: 

s s
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It is worth mention than FNC refers to non-conservative forces that may act, especially as viscous damping, 

which is given by the product between velocity and damping coefficient c. 

First, a free vibration solution is sought to determine the natural frequencies. Then, it is assumed that the 

coefficients aj and bj are harmonic, where ω is the natural frequency: 

( ) ,i t
j ja t a e   ( ) i t

j jb t b e   (16) 

By substituting (16) in the differential equations and disregarding the nonlinear terms, it is obtained a set of 

algebraic equations, which can be written in matrix form, where K is the stiffness matrix, M is the mass matrix 

and A is the amplitude vector:  

 2 0 K M A  (17) 

Equation (17) constitutes an eigenvalue problem, where ω² are the eigenvalues and the eigenvectors give the 

vibration modes. Considering a solution with 5 modes for both blade and tower, the Fig. 3a shows how the natural 

frequencies change with the increase in the blade rotating frequency Ω. The tower parameters considered are: 

height H=46 m, density ρT=7850 kg/m³, Young’s modulus ET=210 GPa, the inner tower diameter is 1.49 m and 

the outer diameter is 1.50 m; and the blade parameters are: length L=22 m, density ρ=2770 kg/m³, Young’s 

modulus E=69 GPa, the width is 0.5 m and the thickness 0.1 m; the nacelle has a mass M0=30000 kg. 

Figure 3 displays the natural frequencies of blade and tower in an uncoupled and coupled situation. Figure 

3(a), shows the coupled natural frequencies meanwhile Figure 3(b), displays the natural frequencies in an 
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uncoupled situation. It is observed that the points of intersection for the uncoupled frequencies in Fig. 3(b) match 

the regions A, B and C of the Fig. 3(a), where the veering phenomenon occurs. These regions are worth to 

investigate regarding resonance since more than one mode can produce large displacements. Furthermore, when 

the rotating frequency Ω increases, the natural frequency also increases, leading to the conclusion that the parked 

conditions (Ω=0 rpm) is the one with more flexibility. 

  
(a) (b) 

Figure 3. Natural frequencies (a) Coupled structure (b) Uncoupled structure 

3  Frequency-domain response 

As previously indicated, in order to control the system vibration an inverted pendulum is installed to the wind 

turbine and, aiming to determine the optimum parameters for this pendulum, the frequency-domain response is 

sought. The coefficients aj and bj are once again assumed as harmonic in addition to θ, due to the pendulum 

addition, then: 
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The differential equations obtained from Hamilton’s principle become algebraic equations when expressions 

(18) are substituted into them. Using a solution with three modes, the following system is obtained: 
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The system can be solved for 
1a , 

1b  and  , therefore they will be written in terms of the frequency ω. Since 

1b  gives the amplitude of the tower displacement, the dynamic amplification factor (DAF) is the quotient of  the 

module of 
1b  and the static response. Keeping the blade and tower parameters obtained from last section for the 

parked condition (Ω=0 rpm), and using a pendulum of mass 850 kg (around 10% of the tower’s mass), spring 

stiffness 100 kN.m/rad and length 5.15 m, Fig. 5(a) presents DAF for different damping ratios (ζ). From Fig. 5(a) 

it is possible to verify that the installation of the IPTMD creates two peaks around a without control peak response. 

That is the region where the IPTMD is aiming to have best performance. Furthermore, the structure curve with the 
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pendulum always intersect two points (P and Q), independently of the damping ratio. This was first observed by 

Den Hartog [11], who states that in the optimum condition both points have the same ordinate and also one of 

them is a maximum point. Therefore, an iterative process was developed searching the optimum length and 

damping ratio for the pendulum, keeping the other parameters constant: from a starting length it is possible to get 

the frequencies at P and Q (ωP and ωQ), then each frequency is substituted in the DAF expression generating two 

expressions whose subtraction has to be zero, giving a new length and a new ωP and ωQ and so on, until the value 

for the length converges. After this, to get the optimum damping ratio, it is necessary to make sure that P or Q is 

a maximum point by performing the derivative at this point and making it equal to zero. For the case studied the 

optimum length is 5.241 m and damping ratio of 11.4%, the correspondent frequency-domain response is shown 

in Fig. 5(b).  

  

(a)  (b)  

Figure 5. Frequency-domain response (Ω=0 rpm) (a) for l=5.15 m (b) optimum condition 

4  Time-domain response 

The Runge-Kutta method can be applied to the differentials equations of motion to get the time response of 

the structure. For the parked conditions, the first and second natural frequencies are, respectively, ω=0,99 rad/s 

and ω=1,59 rad/s. In order to evaluate the resonance response an harmonic force with these frequencies and 

intensity of 1 kN is applied. Figures 6 and 7 show the displacement of the tower top for these conditions. The 

pendulum parameter are the optimum ones obtained in the previous section. It is observed that the excitation of 

ω=1,59 rad/s lead to large displacements, therefore IPTMD was tuned to that frequency aiming to control these 

displacements.  

  

(a)  (b)  

Figure 6. Time response (ωf =0,99 rad/s) (a) without TMD (b) with TMD 
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(a)  (b)  

Figure 7. Time response (ωf =1,59 rad/s) (a) without TMD (b) with TMD 

5  Conclusions 

Therefore, the results for time-domain response show that the tower displacement with the IPTMD are kept 

at safe levels, however the pendulum works better under the excitation which it was tuned for (ω=1,59 rad/s). The 

method applied to determine the optimum parameters can be used at any given rotation of the blade, thus it can 

work for parked and operating conditions, though further study is necessary to verify if a single IPTMD could be 

effective for a wide range of excitations and blade rotation velocities. 
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