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Abstract. Phononic crystals are periodic structures that may present Bragg scattering and wave coupling band
gaps, which are frequency ranges where waves cannot propagate freely. In this work, it is proposed a three-
dimensional frame structure that can be used to support and isolate vibrations of a rigid payload. This structure is
a 3D lattice made of frame elements. Firstly, one frame presenting the intersection of longitudinal, flexural, and
torsional band gaps were proposed. The resulting unit cell is modeled via the spectral element method (SEM).
The three-dimensional structural model includes constraints and inertial characteristics of a rigid body attached
at its top. Pseudo experiments are performed using mechanical property values sampled from previously defined
statistical distributions. A Markov chain Monte Carlo (MCMC) algorithm is used to estimate posterior distributions
of mechanical properties considered as statistical variables. Prony’s method is used in the MCMC algorithm to
improve its precision. The Monte Carlo method is used to infer about the stochastic wavenumber. Two robust and
complete attenuation bands related to the considered variability are observed, which are shown on the dispersion
diagram of the 3D structure for some observations along the contours of the irreducible Brillouin zone (IBZ). Such
attenuation bands can also be observed on the forced response of the rigid payload subjected to base excitations.

Keywords: Three-dimensional wave propagation, Phononic crystal, Uncertainty quantification, Periodic structure,
Vibration passive control

1 Introduction

Studies on three-dimensional periodic structures show they may present interesting phenomena such as Bragg
scattering, veering and locking coupling band gaps, and therefore work as passive vibration control devices [1–3].

The wave propagation approach has some advantages, when dealing with periodic structures, such as the
physical interpretation for wave related phenomena, with a reduced computational cost [3–6].

Additive manufacturing made it possible to design more complex periodic structures. However, mechanical
property variability is substantial for such manufacturing processes and should be considered [4, 7]. Statistical
methods have been developed to quantify uncertainties related to variability of the considered parameters [8, 9]
and the Bayesian approach has presented good results for structural problems [6, 10–12].

The objective of the present study is to present a methodology that uses Bayesian statistics to infer the me-
chanical properties and the stochastic response of a periodic structure. A periodic three-dimensional phononic
crystal (PC) unit cell is proposed, and a built up finite structure is designed using this unit cell. The stochastic
response is obtained from the unit cell. The deterministic response of the built up structure were obtained using
the mechanical property mean values to better understand the nature of the observed attenuation bands.
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2 Methodology

2.1 Wave propagation approach

Using Hamilton’s principle, it is possible to obtain the equations of motion of the one-dimensional elementary
rod, Saint-Venant’s shaft, and Timoshenko beam [13–17]:

∂

∂x

(
EA

∂ux
∂x

)
− ρA∂

2ux
∂t2

= qn(x); (1)
∂

∂x

(
GKs

∂φx
∂x

)
− ρJ ∂

2φx
∂t2

= qt(x), (2)

GAκ

(
∂2vy
∂x2

− ∂φz
∂x

)
− ρA∂

2vy
∂t2

= qv(x),
∂

∂x

(
EI

∂φz
∂x

)
+GAκ

(
∂vy
∂x
− φz

)
− ρI ∂

2φz
∂t2

= qm(x); (3)

where the mechanical properties E, ρ, and G are, respectively, the material Young’s modulus, mass density, and
shear modulus, the geometric properties A, I , Ks, ρJ , and κ are, respectively, the element cross-sectional area,
second moment of area, torsion constant (Saint-Venant’s correction due the non-circularity of the shaft), mass
moment of inertia per unit of length, and Timoshenko shear coefficient, the quantities ux, vy , φz , φx, qn(x),
qv(x), qm(x), and qt(x) are, respectively, the element longitudinal and transversal displacements, the beam shear
deformation angle, the torsional angle, and the rod, beam (transverse and rotational), and shaft external loads.

Using Equations (1) (2), and (3) for each structural element, it is possible to obtain the analytical solution of
a frame with constant mechanical and geometric properties for the whole length of each one-dimensional element.
Also, it is possible to obtain the beam, rod, and shaft dynamic stiffness matrices via the spectral element method,
which relates displacements and forces in the frequency domain [15]:

Dc(ω)q = F. (4)

The spectral elements of beam, rod, and shaft can be assembled as a three-dimensional frame element [18].
This element has constant mechanical and geometric properties throughout its length. Hence, a structure with
varying properties can be divided into a defined number of elements, which can be assembled similarly to the finite
element method (FEM) [18] and, considering internal nodes free of external forces, a condensation process can be
applied to consider only two nodes, located at their edges [19].

Six elements (ei, i = 1, . . . , 6) with properties varying throughout their length (L) can be modeled via SEM,
and then assembled as schematically represented in Figure 1a. Hence, node q7 can be condensed considering there
are no external forces applied there, keeping only the external nodes (q1, . . . ,q6) at the three-dimensional unit
cell.

(a) Schematic representation of
the three-dimensional unit cell.

(b) Decomposition of k into its
Cartesian components.

Figure 1. Schematic representation of the three-dimensional unit cell and Cartesian decomposition of k.

Using the Bloch-Floquet theorem [20, 21], and considering the proposed Cartesian system, we have q2 =
λ2xq1, q3 = λ2yq4, and q5 = λ2zq6. Hence, it is possible to write q1, . . . ,q6 related to q1 only [11, 22]:
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where λx = e−ikxLx , λy = e−ikyLy , and λz = e−ikzLz . Moreover, it is possible to use the equilibrium of the
external forces using the matrix relation:
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Now, substituting Equation (5) in Equation (4) and premultiplying both sides by ΛL one obtains:

ΛLDc(ω)ΛRq1 = 0, (7)

which is a polynomial problem with roots λxj , λyj , and λzj .
The wavenumber k can be decomposed using its Cartesian components into kx, ky , and kz as represented in

Figure 1b. Wavenumber values ky and kz can be related to kx, α, and β, or in exponential terms, where λx, λy
and λz are related using:
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cos(β)

cos(α)
kx,

kz =

√
1− cos2(α)− cos2(β)

cos(α)
kx,

(8)
λy = λ

cos(β)
cos(α)

Ly
Lx

x ,

λz = λ

√
1−cos2(α)−cos2(β)

cos(α)
Lz
Lx

x .

(9)

If cos(β)
cos(α)

Ly
Lx

and
√

1−cos2(α)−cos2(β)
cos(α)

Lz
Lx

are integers simultaneously, the polynomial equation indicated in
Equation (7) will increase its order, but remains an ordinary polynomial than can be solved using its companion
matrix [11, 22].

By this approach, it is possible to obtain the dispersion relation scanning the first Brillouin zone (FBZ)
represented in Figure 2a [3]. In addition, as the elementary cell (Figure 1a) is symmetric with respect to the axes
x, y, and z, it is necessary to scan only the IBZ to check for a complete band gap [23]. As presented in Figure 2a,
the contour of the IBZ consists of four parts: from Γ to X, where γ = 0◦, β = 90◦ and α = 90◦ (k1); from X to
M, where β = 90◦, α varies from 90◦ to 135◦ and γ varies from 0◦ to 45◦; from M to R, where α is 135◦, γ is
45◦, and β varies from 90◦ to 45◦; and from R to Γ, where α is 135◦, γ is 45◦, and β is 45◦ (k7).

However, in order to maintain the polynomial ordinary and reduce computational cost, three observations
were taken at the IBZ from X to M (γ = 63.435◦ and β = 108.435◦, γ = 75.964◦ and β = 120.964◦, and
γ = 90◦ and β = 135◦) named, receptively k2, k3 and k4; and from M to R: (β = 63.435◦; and β = 75.964◦)
named, respectively, k5 and k6 as represented in Figure 2b.

(a) Representation of the FBZ and
IBZ (red) in the reciprocal space for
the three-dimensional unit cell.

(b) Representation of the samples made in the
contour line X − M and M − R in the IBZ
for the three-dimensional unit cell.

Figure 2. Representation of the IBZ for the proposed three-dimensional structure (a), and the proposed observations
along the contour line from X to M and from M to R (b).

For given values of β, γ, and α, the polynomial on Equation (7) may yield a large number of wavenumbers,
(k2 can yield 96 different wavemodes) but most of them have no physical meaning [22]. Modes with physical
meaning are here named principal modes, which can be selected by including a perturbation in the mathematical
model, and keeping the more robust modes [22]. This procedure can be computationally expensive [6, 11].

The imaginary part of the complex wavenumber represents the evanescent part of the wave for a given fre-
quency [6]. Hence, the minimum value of | Im(k) |, can be a meaningful evidence of a complete and full atten-
uation band if, for all the observations in the IBZ, all wavenumbers present δm greater than a defined value of
attenuation (in percentage), where δm is the attenuation per cell given by [6]:

δm = 100(1− e−Im(k)). (10)

This methodology facilitates the calculation of attenuation bands, especially for the stochastic result, where
the response has to be computed several times according to the proposed methodology that represents the variabil-
ity, which is usually observed due to the manufacturing process [4, 24].
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2.2 Uncertainty quantification of the mechanical property variability

First, a Gamma distribution is proposed for the statistical mechanical properties (E and ρ). It is made via the
maximum likelihood estimator, applied to some observed valued reported in the literature. Eight pairs of values
were sampled from each distribution and those values were considered as observations (details in [10].)

In order to estimate the distributions of E and ρ, an MCMC algorithm was proposed in a way that it uses
an informative prior distribution, the likelihood function, and Prony’s method to obtain the posterior distribution.
Using each pair of E and ρ, one periodic beam was simulated, where FRF values were simulated throughout
the frame. Using Prony’s method, which has its peculiarities described in [24], the equivalent wavenumbers are
estimated. Then, a mean error between the estimated wavenumber and the value from the model inside the MCMC
algorithm for a frequency range is used to improve the algorithm precision.

After inferring the distributions of E and ρ, considering the Poisson’s ratio (ν) constant, the shear modulus
G can be obtained as a random variable using the relation G = E

2(1+ν) .
There are three methods widely used to check the MCMC chain convergence [25] already implemented in

the R package “coda” [26]: Geweke’s criterion (|ZG|), the Heidelberger and Welch test (HW-p), and the Raftery
and Lewis (1992) factor (RL).

The posterior distribution and the expansion optimal linear estimator (EOLE) [27] were used to represent the
spatial variability of the mechanical properties as stochastic fields that were decomposed into an eigenvalues and
eigenvectors when discretized [6, 11] similarly to the discrete Karhunen–Loève (KL) expansion [28].

Finally, the Monte Carlo method was used to run this procedure, sampling from the posterior distribution
according to the spatial discretization, expanding and smoothing the spatial field of the parameters E and ρ using
EOLE as the convergence of the Monte Carlo method requires [14]. Afterwards, the Bayes’ factor (BF) was used
to infer on the stochastic response (the minimum of | Im(k) | from k1 to k7) [6, 11]. The BF, in practice, can be
interpreted as a ratio of chanced against or in favor of the null hypotheses [29]. In the present application, if the
curve representing the BF is greater then zero, it represents that there is a chance equal to or greater to the BF value
in favor of the occurrence of the attenuation band.

2.3 Obtaining the forced response for the complete structure

To apply the proposed approach to a feasible structure, a built up structure made of 4 three-dimensional
cells is proposed. In addition, a plate structure was assembled at the top of the periodic frame structure, and the
lower DOFs were allowed to displace vertically only [30]. Therefore, the constraint due to the plate, as well as its
rotational inertia and mass were modeled at the top of the frame. The FRF obtained using the mean values of the
posterior distributions were compared with the deterministic response in the form of attenuation bands obtained
from the deterministic three-dimensional unit cell using the same mean values.

3 Results

In this section, we present the results in the following order: the posterior distributions, deterministic analysis
using the mean values, and the stochastic analysis on the dispersion diagram.

3.1 Posterior distributions

The mechanical property posterior distributions obtained via the proposed MCMC algorithm yields the dis-
tributions presented in Figure 3, and and its convergence tests were also checked:

(a) Posterior distribution of E (red line)
and histogram.

(b) Posterior distribution of ρ (red line)
and histogram.

(c) Posterior distribution of G (red line)
and histogram.

Figure 3. Estimated posterior distributions.
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3.2 Deterministic results

Considering the unit cell with length of 43.6 mm and a cross-shaped cross-section with a profile given by the
following expression:

h(x) =
0.015

(e(8.25−700x) + 1)
, 0 ≤ x ≤ 0.0218, h(0.0218 + x) = h(0.0218− x), (11)

where h(x) is symmetric with respect to x = 0.0218 m with maximum value at x = 0.0218 m of 15 mm, it
is possible to assemble the three-dimensional cell schematically represented by Figure 1a and whose design if
presented by Figure 4.

(a) Front view of proposed
three-dimensional unit cell.

(b) Isometric view of proposed
three-dimensional unit cell.

Figure 4. Proposed three-dimensional unit cell.

Figure 5 represents the response for the minimum value of | Im(k) | for the seven wavenumber combinations.
In the present study, three gray color patches are used for δ = 0.2, δ = 1.1, and δ = 1.35. Those values were
defined to indicate attenuations of, respectively and approximately, at least 18% (δc ≥ 0.18), 67% (δc ≥ 0.67),
and 74% (δc ≥ 0.74) per cell length. It is possible to observe that the main attenuation band is located between 12
and 17 kHz for δc ≥ 0.74 and between 9 and 18 kHz for δc ≥ 0.67.

Figure 5. Minimum of the magnitude of the imaginary part of the wavenumber for the samples along the contour
of the IBZ for the cell represented in Figure 4 from 0 to 50 kHz. Attenuation of at least 18% (δc ≥ 0.18; light
gray), 67% (δc ≥ 0.67; middle gray), and 74% (δc ≥ 0.74; dark gray) per cell length.

3.3 Forced response for the proposed support

Figure 7 shows the simulated complete structure (front view in Figure 7a and isometric view in Figure 7b)
for the computation of the FRF via exciting all the lower nodes (y direction) and measuring the response at the top
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nodes (y direction), which are presented in Figure 6, where it is possible to verify a good agreement, especially
for the main band gap (9-18 kHz) between the dispersion response from the three-dimensional unit cell and the
dynamic response for the whole structure, except for some modes within the band gaps, which could be caused by
defects or local resonances.

Figure 6. FRF obtained from the proposed complete structure (Figure 7) from 0 to 50 kHz. Attenuation of at least
18% (δc ≥ 0.18; light gray), 67% (δc ≥ 0.67; middle gray), and 74% (δc ≥ 0.74; dark gray) per cell length.

(a) Front view of the proposed complete structure. (b) Isometric view of the proposed complete structure.

Figure 7. Proposed structure, as a support for a solid payload at the top nodes, where all the nodes at the base are
excited in vertical direction. The response is the measurement made at the top nodes.

3.4 Stochastic results

Stochastic wavenumber (the minimum of | Im(k) |), which relates to the minimum attenuation for all waves
(longitudinal, flexural and torsional), for k1, . . . , k7 after 1,000 steps of the Monte Carlo method. We applied the
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BF to infer on this stochastic response. For instance, where the line is marked in cyan, there is 100 times more
chance of existing an attenuation band than not existing. Figure 8 presents two different patches related to the
minimum attenuation of at least 18% per cell (δc ≥ 0.18, light gray), and of at least 67% per cell (δc ≥ 0.67, dark
gray) throughout the IBZ. Two different attenuation bands were observed: the first one, at low frequency range
(0.5-3 kHz), of at least 18% per cell, and the second one at higher frequencies presented regions of at least 67%
per cell (10-17.5 kHz).

Figure 8. Minimum value of the magnitude of the imaginary part for BF100 for the proposed valued of θ from 0 to
50 kHz for the cell made of periodic plane frame elements. Attenuation of at least 18% per cell (δc ≥ 0.18, light
gray), and of at least 67% per cell (δc ≥ 0.67, dark gray)

4 Conclusions

In the present study, a procedure to model the stochastic response of a three-dimensional phononic crystal
and verify its robustness with respect to varying mechanical properties using the estimated distribution via a highly
precise MCMC algorithm is proposed. A geometrically periodic three-dimensional frame was simulated and the
proposed procedure applied, presenting two robust band gaps: a first one occurring at low frequencies with min-
imum attenuation of at least 18% per cell for all waves (longitudinal, flexural and torsional) and throughout the
IBZ. The second one occurs at high frequencies, presenting some attenuation bands of at least 67% and throughout
the IBZ. The deterministic response using constant mechanical properties was simulated using the mean values
of the statistical distributions to better interpret the occurring attenuation phenomena, indicating that may have
attenuation phenomena other than Bragg scattering band gaps.
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