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Abstract. The renewable energies are in constant evolution for the sake of the necessity of finding alternatives to
fossil fuels derived energy. One of these alternatives are the wind farms, offshore and/or onshore, that provides
electricity through the wind force. The horizontal axis turbines are commonly seen on this farms, usually with 3
blades, because of its cost-benefit. However, even though there are equations well defined regarding the behavior
of this machines, some environmental variables (such as terrain, height and wind wakes) can add a nonlinear and
random factor to the energy conversion. Thereby, the use of system identification shows itself useful to forecast
the behavior of this system. In this work, a database from Nørrekær Wind Farm, located on Denmark, is exploited
by identification techniques, in order to estimate nonlinear auto-regressive with exogenous inputs (NARX) and
auto-regressive with exogenous Inputs (ARX) models. To calculate them properly, three methods will be used
and compared: Classical Gram-Schmidt (CGS), Modified Gram-Schmidt (MGS) and Householder-based QR-
Decomposition with Column Pivoting. All the methods provided results closer to real data, although MGS and HT
models were slightly more accurate.

Keywords: Renewable energy, system identification, wind farms.

1 Introduction

1.1 Context

The technology evolution and growth provide to society on the last decades an abundance of data coming
from multiples interactions between humans and machines, like computers, GPS devices, cellphones and med-
ical devices (The World Economic Forum)[1]. This makes any kind of data, nowadays, an extremely valuable
information, since its possible to store and large amounts of historical data from any kind of system. In addition,
associating the available data with computing intelligence, useful information can emerge, regarding a system and
its behavior.

One example of how to use the data is System identification, which, according to Aguirre[2] studies the
proceedings that allow to build mathematical models from observed data and signals. This models can predict the
system behavior or output, like the power generated by a Wind Turbine .

The Wind Turbines generates electrical energy from wind kinetic energy. This wind conversion is a clean
energy generation system, and using it are strictly aligned with sustainable development aimed by United Nations,
since the publication of the Brundtland Report [3], in 1987. Moreover, by 2050, the demand for energy could
double or even triple, according to Nelson [4], what highlights the search and implementation of new efficient
generation systems.
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1.2 Objectives

This work aims to compare models generated by three Identification System Techniques: Classical Gram-
Schmidt (CGS), Modified Gram-Schmidt (MGS) and Househoulder-based QR-Decomposition with Column Piv-
oting (HT). This comparison are made using Statistical Validation Indexes, evaluating the quality of each prediction
and how accurate the models are.

1.3 Work description

This work intends shows and study of how Identification methods can predict accurately wind turbine be-
havior, and can be applied to simulate energy generation before it actually happens, given the wind speed series
on a place. The models built use a real database obtained with winddata.com that contains wind speed and power
generation from a Norwegian Wind Farm, called Nørrekær. Moreover, this work shows statistical measurements
comparison between validation indexes in order to analyze the quality of the predictions made.

This study can be applied on many other wind turbines. This means that, after defining properly the model of
the turbine analyzed, it is possible to predict the power generated by this turbine, using new wind speed databases,
knowing the error margin of the prediction. This information can be useful, for example, to analyze viable condi-
tions for building new Wind Farms.

2 Methodology

2.1 The Studied Turbine

The reference used in this work was the turbine Nordtank NTK330F. This turbine has a composite rotor
(GPFR – Glass Fiber reinforced plastic), manufactured by LM Glasfiber S/A, with 28m diameter. The blades
move through a 615.7m2 area, with a 39 rpm speed rotation and nominal power of 330kW. The generation begins
at 4m/s wind speed (Cut in speed) and is turned off by 25m/s (Cut-out speed). The turbine’s inductor generator
was manufacturer by Siemens/ABB and the nominal operation occurs at 1500 rpm, generating a voltage of 690V
by 50Hz frequency (Bauer and Matysik) [5].

2.2 Turbine’s General Behavior

A wind turbine woks, essentially, transforming kinetic energy from the wind in electric energy at the gen-
erator’s output, as said by Hansen [6]. According to Nelson [4], the kinetic energy come from air molecules
movement, so the amount of air molecules moving across some area, during some time, determines the power
locally. Besides that, Burton, Sharp, Jenkins and Bossanyi [7] said that the modern wind turbines use the lift forces
on the blades to move the rotor. These forces exist due to a difference on the airflow pressure that passes by the
laminar surface.

Furthermore, the distance from rotation center also has influence on relative speed vector. This happens
because, as higher the rotation radius is, higher the linear speed is as well [8]. The Eq. 1 represents the relation
between these two measures [9].

v = rω, (1)

which r is the rotation radius and ω the rotational speed.
This is why the blades have a twisted shape, as the angle of attack can be the most optimal, improving the

energy conversion as well.
Finally, the yawing mechanism is responsible to keep the blades constantly wind-aligned. An anemometer

posted at the top of turbine tower assures the measurement of the wind direction and then an electronic central acts,
when necessary, to rotate the rotor and maximize the energy conversion.

2.3 The Database

The database was bought on winddata.com. The data used on tests and simulations correspondent to wind
speed and power generated measurements on turbine A1, whose space position inside the wind farm is shown on
Fig. 1.
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Figure 1. Nørrekær layout. The area covered is 2,1×2,1 km. From [10].

The data used on this study was in the database, according Tab. 1, that presents the fields and meaning
respectively.

Table 1. Database fields decription.

Database Field Field Description

SCAN ID An identifier number. As lower the value is, older is the scan.

CHANNEL ID Determine what the measurement is about (Wind speed, Power, angle...)

MEAN Mean data read from sensors.

The time series taken from this database, fit in two periods, divided in: (a) Identification series, which in-
cludes wind speed and power generated values between 30/11/1992 19h08min and 04/12/1992 04h53min;(b) Val-
idation series, which includes wind speed values and power generated values between 16/04/1993 00h11min and
19/04/1993 05h51min.

Inside each time series, there is not a significant seasonality interference, although, purposely there were
selected time series on two different seasons of the year (winter for identification and spring for validation), eval-
uating the seasonality impact on generated models.

2.4 Identification Methods

The predictive model development was developed by autoregressive system identification methods, with ex-
ogenous inputs. Among the most commons, the ARX and NARX can be highlighted. A more completed approach
in terms of autoregressive polynomials models is the NARMAX modeling (Nonlinear Autoregressive Moving Av-
erage with eXogenous Inputs), which involves the identification using moving average applied to identification
noise, but they will not be into this work. Due to the evaluated system sampling be presented by discrete samples,
the model adopted are essentially composed by a difference equation solution [2].

The ARX models (autoregressive with exogenous inputs), can be described as shown on Eq. 2.
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y(k) =
B(q)

A(q)
u(k) +

1

A(q)
v(k), (2)

which v(k) represents a noise or uncertainties not modelled, u(k) is the system input and y(k) the output. A(q)
and B(q) are polynomials, as:

A(q) = 1 + a1q
−1 + · · ·+ anyq

−ny

B(q) = b1q
−1 + · · ·+ bnuq

−nu

where the q−1 is the delay operator, so that y(k)q−1 = y(k − 1). The ratio B(q)/A(q) is the answer to excitation
(or system transfer function) and the ratio 1/A(q) is the transfer function that relates noise and output. As the noise
is directly on the equation, this belongs to the errors in equation models class (Aguirre) [2]. On the other hand,
the NARX models (non-linear autoregressive with exogenous inputs) are discrete in time and explains the output
value y(k) as a function of previous outputs and inputs values, as a non-linear equation, as described by Eq. 3.

y(k) = f(Ψ(k − 1)T ) + e(k), (3)

e(k) is the noise or uncertainties not modeled by the invariant time function,f , which non-linearity grade is l.
Ψ(k − 1)T contains the regressors output vector, y(k), and regressors inputs vector, u(k), until the instant (k −
1)(Furtado, Torre and Aguirre) [11], which means,

Ψ(k − 1)T = [ΨT
yu]T .

The great difference between the ARX and NARX models is the non-linearity factor that NARX gives to
system identification. As the system studied is non-linear, it hopes to give solutions closer to the real representation.
The models in identification systems need some estimators. At the present study, it was used the least squares
method for obtaining these estimators. The eq. 4 shows the relation among the observed values (−→y ), the regressors
matrix (Ψ) and the estimated parameters (θ) (Furtado, Torres and Aguirre) [11].

−→y = [ΨT
yu]T [θ̂1, θ̂2, . . . , θ̂nθ ]

T , (4)

From the eq. 4, the only unknown variable is θ. So, to obtain it, it is necessary to solve

−→y (k) = Ψ
−→
θ ,

The matrix manipulation influences directly on models representativeness. To achieve an improved repre-
sentativeness, it turns out the need for a better parameters estimation. As a result, this study propose evaluate
orthonormalization methods to determine this needed better estimation, and consequently, models with improved
representativeness.

2.5 Orthonormalization methods for least squares estimation

Classical Gram-Schmidt (CGS): Given a vector space, this method uses the orthonormalization to define
a new base. It is a QR factorization method, that transforms a matrix a product typed A = QR (Golub and Van
Loan) [12]. It results from consecutive right multiplications by elementary superior triangle matrix, what results
in an orthogonal matrix (Trogdon et. al) [13]. Each vector is individually orthogonalized to all previous vectors,
what causes a numerical instability and significant stability loss, already on the second iteration, according (Luc,
Langou, Rozložnı́k and Van den Eshof) [14]. The Algorithm 1 is an implementation example.

Algorithm 1 Coding example for CGS, where A=QR(Golub and Van Loan) [12]

1: R(1, 1) = ||A(:, 1)||2
2: Q(:, 1) = A(:, 1)/R(1, 1)
3: for k = 2 : n do
4: R(1 : k − 1, k) = Q(1 : m, 1 : k − 1)TA(1 : m, k)
5: Z = A(1 : m, k)−Q(1 : m, 1 : k − 1)R(1 : k − 1, k)
6: R(k, k) = ||z||2
7: Q(1 : m, k) = z/R(k, k)
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Modified Gram-Schmidt (MGS): This method derives from the previous one. The modification shows itself
necessary, due to CGS numerical instability. It is notable their mathematical similarity, differing, essentially, on
instructions sequence, and so, the resulting vectors have the same orthonormal structure. The Algorithm 2 shows
an example of MGS implementation for the same conditions presented in Algorithm 1.

Algorithm 2 Coding example for MGS (Golub and Van Loan) [12]. Same conditions applied to CGS.

1: for k = 1 : n do
2: R(k, k) = ||A(1 : m, k)||2
3: Q(1 : m, k) = A(1 : m, k)/R(k, k)
4: for j = k + 1 : n do
5: R(j, k) = Q(1 : m, k)TA(1 : m, j)
6: A(1 : m, j) = A(1 : m, j)−Q(1 : m, k)R(k, j)

Householder-based QR-decomposition with Column Pivoting (HT): This method is used primarily in
least square problems classified as rank-deficient (Luc, Langou, Rozložnı́k and Van den Eshof) [14]. Against the
decomposition presented on Gram-Schmidt methods, this decomposition is the result from a Ψ left multiplication
by a sequence of orthogonal matrix, to reach, at the end, a triangular matrix (Golub and Van Loan) [12]. The
Algorithm 3 shows an example of this implementation.

Algorithm 3 Coding example for HT(Golub and Van Loan) [12]

1: for (j = 1 : n) do
2: c(j) = A(1 : m, j)TA(1 : m, j)

3: r = 0
4: τ = max{c(1), ..., c(n)}
5: while r > 0 and r < n do
6: r = r + 1
7: Find smallest k with r ≤ k ≤ n so c(k) = r
8: piv(r)
9: A(1 : m, r)↔ A(1 : m, k)

10: c(r)↔ c(k)
11: [ν, β] = house(A(r : m, r))
12: A(r : m, r : n) = (Im−r+1 − βννT )(A : r : m, r : n)
13: A(r + 1 : m, r) = ν(2 : m− r + 1)
14: for i = r + 1 : n do
15: c(i) = c(i)−A(r, i)2

16: τ = max{c(r + 1), ..., c(n)}

2.6 Validation indexes

In order to properly compare the results provided by the methods CGS, MGS and HT, there were used
statistical validation indexes. They are present as following with their concepts and equations, as presented by
Furtado, Silva and Santos [15].

Root mean square error (RMSE). This is one of the most used indexes to measure prediction errors. High RMSE
values indicates high prediction errors in model (Heringer de Miranda) [16]. The disadvantage of this method
occurs in prediction with large errors, large variance and outlier predictions (Kyriakidis) [17]. It is calculated by
eq. 5 where ŷ represents the estimated data and y the real data, from validation series.

RMSE =

[
1

N

N∑
k=1

(ŷ(k)− y(k))2
] 1

2

, (5)

Mean Average percentage Error (MAPE). This index express the error as a real percentage of the real value,
which means, smaller its value, higher the model assertiveness (Heringer de Miranda) [16]. A safeguard for this
index is its sensibility to null values, as can be saw in eq. 6.
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MAPE =
1

N

N∑
k=1

∣∣∣∣ ŷ(k)− y(k)

y(k)

∣∣∣∣, (6)

Theil’s U2 (U2). This is a quality prediction index (Furtado, Silva and Santos) [15]. The closer it is from zero, bet-
ter is the prediction’s quality. Despite its similarity with RMSE, this index is different due variance normalization
of the real series, as shown on eq. 7, where y is the mean of the k samples contained on validation series.

U2 =

[∑N
k=1(ŷ(k)− y(k))2∑N
k=1(y(k)− y(k))2

] 1
2

, (7)

Geometric mean relative absolute error (GMRAE). According to Hyndman and Koehler [18], this index has great
performance when used to modeling a set of time series. In addition, it compares the absolute error of a given
predictive method with a random walk prediction (Armstrong and Collopy) [19]. This index is calculated by eq. 8.

GMRAE =

[ N∏
k=1

∣∣∣∣ ŷ(k)− y(k)

y(k)− y(k)

∣∣∣∣] 1
N

. (8)

Percent better (PER). It is a percentage index, which implies no unit measure. According to Hyndman and Koehler
[18], this index is highly used to compare methods, defining the prediction percentage of a given method that is
more precise than random walk. The calculus is defined by eq. 9.

PER =
1

N

N∑
k=1

j(k)× 100, (9)

where,

j(k) =

{
1, if |ŷ(k)− y(k)| < |y(k)− y(k)|
0, otherwise

3 Results and discussion

Figure 2 exhibits the modulated input data from the identification time series, which is the wind speed mea-
surements, according to their respective date and time. It also shows the output data – or power registered.

Figure 2. Identification data.
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Thereby, there were generated the results for each method analyzed (CGS, MGS and HT), whose val-
ues were graphically represented, along with validation data, objecting a visual comparison between the results
reached.Figure 3 shows the results obtained. The dotted line shows the values provided by each method.

Figure 3. Answer given by CGS, MGS and HT.

For the three methods analyzed, the results were visually satisfactory and the generated model could follow
the turbine power generation. Therefore, the validation indexes analysis is necessary to have a more detailed
conclusion. The values obtained on the indexes calculus present an overview of which estimation method can be
the more properly used for the present system identification. Table 2 provides the values for the five indexes used
on validation, associated to the results previously shown. Each column represents a method and each row, an index.

Table 2. Validation indexes evaluation by model.

INDEX CGS MGS HT

RMSE 0.07867 0.07790 0.07790

MAPE 0.19324 0.18081 0.18081

U2 0.36353 0.35997 0.35997

GMRAE 0.40974 0.37641 0.37641

PER 77.8689 79.7137 79.7131

4 Conclusion

The values obtained on Validation Indexes shows that the methods MGS and HT provide results mathemati-
cally equals (the differences between the values were roughly 10−14, so it is not possible to determine which one
is the best among them. In addition, the CGS indexes could not provide a more accurate result, and, consequently,
it has a minor quality of prediction.

Therefore, after comparing the tested methods and validate them by the indexes RMSE, MAPE, U2, GMRAE
and PER, it is reasonable to conclude that they are efficient to modeling the system proposed in the time analyzed,
which is five days in a sequence.
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