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Abstract. The development of horizontal axis wind turbines brought longer blades and taller towers, which incurs 

in structures more susceptible to vibration problems. The vibrational behavior of the blades and the tower are 

studied separately at a first stage and each structure is typically modeled as a cantilever beam, with the aid of the 

finite element method. The most common beam models are the Euler-Bernoulli Beam Model and Timoshenko 

Beam Model, both used on this work. The key differences between those two models are that the shear stress and 

the rotatory inertia effects are ignored on the first one, which generate some discrepancies among the results. In 

the present work, a finite element method code is implemented for both beam formulations to determine the natural 

frequencies of a reference wind turbine blade, whose properties were obtained in the literature. The code was first 

validated by comparing the computed and theoretical results for a cantilever beam with rectangular cross section, 

and then applied to the wind turbine blade. For both structures analyzed it is shown that the natural frequencies 

obtained with Timoshenko model are lower than the ones obtained with Euler-Bernoulli model, and that the 

magnitude of difference increases with mode order. 
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1  Introduction 

On the latest years, in searching for more efficiency, power generation capacity and viability of 

implementation, longer and more flexible blades, together with taller towers, were developed for horizontal axis 

wind turbines. These characteristics increase the importance of aeroelastic analysis of these structures, which 

allows to determine how the oscillatory behavior will be in the presence of air flow (Hansen [1]). 

For aeroelastic analysis, two distinct mathematical models must be coupled: one to represent the structural 

dynamics and other to represent the aerodynamics of the wind turbine (Wang et al. [2]). The structural dynamics 

model aims to determine the natural frequencies and vibrational mode shapes and is the focus of this paper. 

At a first modelling stage, the blade and tower are analyzed separately and then assembled to represent the 

structural dynamics of the complete wind turbine, whose most common configuration is composed of one tower 

and three blades. The blade and tower structures are traditionally modeled as cantilever beams (clamped-free 

boundary condition) and the finite element method is used to account for the variation of properties along their 

length. Beam properties are obtained from more detailed finite element models, which uses solid and shell 

elements, and are developed with tension analysis in focus.  

Among the beam elements formulations, the Euler-Bernoulli Beam, or Classical Beam Theory, is the most 

used one, given it ease of implementation and large reference material availability. However, it neglects the effects 

of shear stresses and rotatory inertia, which can incur in some errors. These effects are included in the Timoshenko 

beam element, making it a better representation of reality. 

In the present work, a finite element method code is implemented for both beam formulations, Euler-

Bernoulli and Timoshenko, in order to determine the natural frequencies of the DTU 10MW reference wind turbine 
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(RWT) blade, whose properties were obtained in Bak et al.[3]. The code was first validated by comparing the 

computed and theoretical results for a cantilever beam with rectangular cross section, and then applied to the wind 

turbine blade. The paper presents the theoretical expressions used to compute the natural frequencies and the finite 

element mass and stiffness matrices for both beam models, followed by the results obtained for the two structures 

analyzed and a discussion of the differences between Euler-Bernoulli and Timoshenko results. 

2  Theoretical Equations for Natural Frequencies 

Theoretical equations for natural frequencies of uniform beams (constant cross section and material 

properties along their length) considering the Euler-Bernoulli theory (EB) and Timoshenko beam theory (TBT) 

are presented in this section. The equations for EB are found in different vibration textbooks (Blevins [4], Rao [5], 

Inman [6], Craig & Kurdila [7]), while the equations for TBT are more restricted, being Huang [8] the reference 

for this paper. These equations depend on the boundary conditions defined at the beam ends. As the focus of this 

paper is on the clamped-free boundary condition (cantilever beam), only this condition will be considered.  

The equations for axial and torsional vibrations are given in eq. (1) and eq. (2), respectively, where ω is the 

natural frequency (in rad/s), n is the mode number, 𝐿 is the beam length, 𝐸 is the Young’s Modulus, 𝜌 is the 

specific mass, 𝐺 is the shear modulus, 𝐽 is the torsional constant and 𝐼𝑃 the polar moment of inertia. These equations 

apply to both beam models since the shear stress and the rotatory inertia affect only the transverse vibration modes. 

 

𝜔𝑛
𝐴𝑥𝑖𝑎𝑙 =

(2𝑛 − 1)𝜋

2𝐿
√

𝐸
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 (1) 
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The equation for transverse vibration considering EB is given in eq. (3), where I is the area moment of inertia, 

A is the cross section area and (𝛽𝑛𝐿) is the weighted frequency, which is given by Inman [6] for the clamped-free 

boundary condition. 

 

𝜔𝑛
𝐸𝐵 = (𝛽𝑛𝐿)2√

𝐸𝐼

𝜌𝐴𝐿4 (3) 

A similar equation for transverse vibration considering TBT is given in eq. (4), but for this case the factors 

bn do not have fixed values, and need to be obtained solving the frequency equation given in eq. (5), which is valid 

for the clamped-free boundary condition. 
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The parameters 𝑟2, 𝑠2, 𝛼 and 𝛽 are defined in eqs. (6)-(9). The factor 𝜅 in eq. (7) is the shear coefficient, 

which depends on the cross-section geometry. 
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Equation (5) is valid for the case of 
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[(𝑟2 − 𝑠2) +
4

𝑏2]

1
2⁄

> (𝑟2 + 𝑠2) 
(10) 

If the condition of eq. (10) is not satisfied some modifications are necessary in eqs. (5), (8) and (9), as 

presented by Huang [8]. The solution of eq. (10) is obtained by plotting the equation for a range of b values and 

finding the values at which the curve crosses zero. 

3  Finite Element Method Procedure 

The natural frequencies and mode shapes of an undamped multiple degree of freedom system are obtained 

by solving the following eigenvalue problem  

 
[[𝐾] − 𝜔2[𝑀]]{𝑋} = {0} (11) 

where [𝐾] is the stiffness matrix, [𝑀] the mass matrix, 𝜔 the natural frequency and {𝑋} the vector that 

contains the corresponding mode shape. Both matrices are square and have dimension equal to the numbers of 

degrees of freedom of the system. A non-trivial solution of eq.(11) is obtained for 

 
𝛥 = |[𝐾] − 𝜔2[𝑀]| = 0 (12) 

whose solution gives the values of the squared natural frequencies (𝜔2). 

The finite element method is used as an effective tool to obtain the stiffness and mass matrices of structures 

with complex geometry (Cook et al. [9]; Craig & Kurdila [7]). The basic idea is to divide the complex geometry 

into small parts with a much simpler geometry, such as lines, triangular or trapezoidal plates and tetrahedron or 

hexahedron solids. These simple parts are named elements, and their connection to each other occur at the 

extremities, named nodes. Stiffness and mass matrices are available for different types of elements, and their 

assembly provides the matrices for the complete structure. 

For the particular case of line elements, depending on the degrees of freedom and mathematical assumptions 

that are considered, different element stiffness (𝑘𝑒) and mass (𝑚𝑒) matrices are obtained. This work considers all 

possible vibration directions for a line element: axial, torsional and transverse (bending). The axial and torsional 

element matrices have dimension 2 x 2 and are represented as (Craig & Kurdila [7]) 
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It is important to point that the mass matrices used in this work are referred as “consistent mass” matrices, 

and they consider that the mass is uniformly distributed along the element. An alternative representation is the 

“lumped mass” matrices, which consider that the mass is concentrated at the nodes. 

The matrices for transverse vibration have dimension 4 x 4 and are distinct for Euler-Bernoulli theory (EB) 

and for Timoshenko beam theory (TBT). For EB the element matrices are 
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 (17) 

 

𝑚𝑒
𝐸𝐵 =

𝜌𝐴𝐿

420
[

156 22𝐿
22𝐿 4𝐿2      

54 −13𝐿
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−13𝐿 −3𝐿2     

156 −22𝐿
−22𝐿 4𝐿2

] (18) 

For TBT, a correction factor is included to account for the effects of shear stress 
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𝛷 =

12𝐸𝐼

𝜅𝐺𝐴𝐿2 (19) 

and the TBT element stiffness matrix is written as (Przemieniecki [10]) 

 

𝑘𝑒
𝑇𝐵𝑇 =

[
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where  

 
�̅� =

𝐸𝐼

(1 + 𝛷)𝐿3
 (21) 

The TBT element mass matrix (𝑚𝑒
𝑇𝐵𝑇) is divided in two parts (Przemieniecki [10]). The first one includes 

the shear stress effects (𝑚𝑒1
𝑇𝐵𝑇) and the second one the rotatory inertia effects (𝑚𝑒2

𝑇𝐵𝑇), as defined in eqs. (22)-(24). 

 
𝑚𝑒
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where  
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6
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6
𝛷2) 𝐿2 (35) 

Noting that the transverse vibration can occur in two directions (referred in this work as flapwise and 

edgewise directions), it is possible to assemble three-dimensional beam element matrices, of dimension 12 x 12, 

that account for all possible vibration directions. However, the separate matrices were used in this work in order 

to facilitate the description of mode shapes. The use of the 12 x 12 matrices would require the plotting and 

inspection of the mode shapes to allow their description. 
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4  Validation Case: uniform beam with rectangular cross section 

The validation case selected for this paper is a uniform cantilever beam with rectangular cross section, made 

of structural steel (E=200 GPa, G=76.9 GPa and ρ=7850 kg/m3). The beam is 1 m long and the cross section has 

0.2 m x 0.1 m, being a the longer and b the shorter sides. The coordinate system is chosen such as the x direction 

is aligned with the beam length, the y direction is aligned with the longer side and the z direction is aligned with 

the shorter side. Vibrations in the z direction are named vertical transverse vibrations (or flapwise vibrations) and 

vibrations in the y direction are named lateral transverse vibrations (or edgewise vibrations). 

Some of the parameters needed for the theoretical equations presented in Section 2 are dependent on the cross 

section. These parameters are presented in eqs. (36)-(40) for the rectangular cross section. Eq. (36) is approximate 

and was taken from Young & Budynas [11]. In eq. (40) υ is the Poisson coefficient. 

 

𝐽 = (
𝑎

2
)(

𝑏

2
)3 (

16

3
− 3.36

(
𝑏

2
)

(
𝑎

2
)
(1 −

(
𝑏

2
)4

12(
𝑎

2
)4

)) (36) 

 

               𝐼𝑦 =
𝑎𝑏3

12
 (37) 

 

              𝐼𝑧 =
𝑏𝑎3

12
 (38) 

 

               𝐼𝑝 = 𝐼𝑦 + 𝐼𝑧 (39) 

 

                𝜅 =
10(1 + 𝑣)

12 + 11𝑣
 (40) 

The theoretical and FEM results for EB and TBT are presented in Table 1 For each beam formulation the 

differences between the computational and theoretical results are assessed using eq. (41). 

 

𝛿 =
𝐹𝐸𝑀 𝑅𝑒𝑠𝑢𝑙𝑡 − 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡
 (41) 

The analysis was limited to 16 modes, which are ordered in ascending frequency values for EB. An excellent 

agreement between computational and theoretical results is obtained for both beam formulations, with a maximum 

difference of 0.2%, thus validating the FEM implementation for EB and TBT. The FEM implementation 

considered 100 elements. 

A comparison of FEM results between TBT and EB is also presented in Table 1, in the last column. The 

difference is computed using eq. (42). The same values are obtained for axial and torsional modes, as expected. 

For the transverse vibration modes, it is shown that the TBT frequencies are lower than the EB frequencies, and 

that the magnitude of the difference increases with mode order. This behavior is illustrated for the vertical 

(flapwise) and lateral (edgewise) transverse modes in Figure 1 (a). A difference of about 40% is obtained for the 

4th flapwise mode, which is considered a high value, indicating that the use of TBT can significantly improve the 

computation of natural frequencies depending on the beam dimensions and number of modes required for a 

particular problem.  

 

𝛿 =
𝑇𝐵𝑇 𝑅𝑒𝑠𝑢𝑙𝑡 − 𝐸𝐵 𝑅𝑒𝑠𝑢𝑙𝑡

𝐸𝐵 𝑅𝑒𝑠𝑢𝑙𝑡
 (42) 
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Table 1 – Natural frequency results for uniform beam. 

 
 

(a) Uniform Beam 
 

(b) Wind Turbine Blade 

Figure 1 – Differences between FEM results for EB and TBT.  

5  Application case: reference wind turbine blade 

The blade analyzed in this paper is the DTU 10MW Reference Wind Turbine (RWT) blade, described in Bak 

et al. [3]. The authors provide the properties for 51 sections of that blade and the first eight natural frequencies, 

which are presented on Table 2, and were calculated using an aeroelastic code developed by the DTU called 

HAWC2. 

In this work some assumptions were made to simplify the FEM implementation: 

• The elastic axes of all sections were considered colinear; 

• The mass center and the geometric center of each section were considered coincident; 

• The torsion angles between the sections were not considered. 

The FEM results for EB and TBT are compared to Bak et al. [3] results in Table 2. For most of the modes 

(six out of eight) the agreement is very good, with differences below 3% for EB and below 6% for TBT. However, 

high differences were observed for the 1st Torsion mode (14.98% for both models) and for the 3rd Edgewise mode  

(-9.50% for EB and -16.83% for TBT). It is believed that the high differences for these two modes are due to the 

assumptions considered. Further work is planned to assess the impact of removing these assumptions on the results. 

Regarding the comparison between EB and TBT results, also presented in Table 2, it can be seen that, as for 

the case of the uniform beam, the frequencies obtained by TBT are lower than the ones obtained by EB (with 

exception of the torsion mode which has the same value). The magnitude of the difference between both methods 

also increases with mode order, being of about 8% for the 3rd Edgewise mode. This behavior is illustrated in 

Figure 1 (b). 

Description
Theoretical 

Freq. EB (Hz)

FEM Freq. 

EB (Hz)

Difference 

EB, δ

Theoretical 

Freq. TBT (Hz)

FEM Freq. 

TBT (Hz)

Difference 

TBT, δ

Difference FEM 

EB and TBT

1
st
 Flapwise 81.37 81.54 0.20% 80.76 80.91 0.19% -0.77%

1
st
 Edgewise 162.99 163.08 0.05% 158.10 158.22 0.08% -2.98%

2
nd

 Flapwise 509.97 510.99 0.20% 484.33 485.20 0.18% -5.05%

1
st
 Torsion 580.38 580.03 -0.06% 580.38 580.03 -0.06% 0.00%

2
nd

 Edgewise 1021.47 1022.00 0.05% 853.42 853.65 0.03% -16.47%

1
st
 Axial 1261.89 1261.90 0.00% 1261.89 1261.90 0.00% 0.00%

3
rd

 Flapwise 1427.92 1430.80 0.20% 1275.07 1277.20 0.17% -10.74%

2
nd

 Torsion 1741.15 1740.20 -0.05% 1741.15 1740.20 -0.05% 0.00%

4
th

 Flapwise 2798.16 2803.80 0.20% 2315.32 2318.80 0.15% -17.30%

3
rd

 Edgewise 2860.14 2861.60 0.05% 2034.21 2034.70 0.02% -28.90%

3
rd

 Torsion 2901.92 2900.80 -0.04% 2901.92 2900.80 -0.04% 0.00%

2
nd

 Axial 3785.66 3786.00 0.01% 3785.66 3786.00 0.01% 0.00%

4
th

 Torsion 4062.68 4062.20 -0.01% 4062.68 4062.20 -0.01% 0.00%

5
th

 Flapwise 4625.56 4634.80 0.20% 3527.98 3533.00 0.14% -23.77%

5
th

 Torsion 5223.45 5224.50 0.02% 5223.45 5224.50 0.02% 0.00%

4
th

 Edgewise 5604.74 5607.50 0.05% 3377.03 3382.20 0.15% -39.68%
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Table 2 – Natural frequency results for wind turbine blade. 

 

6  Conclusions 

Computational codes based on the Finite Element Method were implemented with Euler-Bernoulli and 

Timoshenko beam formulations to obtain natural frequencies of a uniform cantilever beam and a wind turbine 

blade. The implementation of the codes was validated comparing computational results obtained for the uniform 

beam with theoretical results. The application of the codes to the wind turbine blade provided reasonable results 

in comparison with the ones available in the literature. The discrepancies are believed to be due to the assumptions 

made, which will be a topic for further investigation. 

Analyzing both model results, it was possible to assess the effects of the inclusion of the shear stress and 

rotatory inertia by the Timoshenko Beam Theory, which reduces the values of the natural frequencies for the 

transverse modes, both for the uniform beam and for the wind turbine blade. 

For the case of the wind turbine blade, a maximum magnitude difference of about 8% was obtained between 

Euler-Bernoulli and Timoshenko models. This number can have some significance for all engineering calculations 

that depend on the natural frequencies as input parameters. 

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the 

authorship of this work, and that all material that has been herein included as part of the present paper is either the 

property (and authorship) of the authors, or has the permission of the owners to be included here.  
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Description
Freq. Bak et al. 

(Hz)

Freq. FEM 

EB  (Hz)

Difference 

EB

Freq. FEM 

TBT  (Hz)

Difference 

TBT

Difference 

EB and TBT

1
st
 Flapwise 0.61 0.61 0.00% 0.61 0.00% 0.00%

1
st
 Edgewise 0.93 0.94 1.20% 0.92 -0.75% -1.92%

2
nd

 Flapwise 1.74 1.73 -0.34% 1.70 -2.47% -2.14%

2
nd

 Edgewise 2.76 2.83 2.62% 2.71 -1.81% -4.31%

3
rd

 Flapwise 3.57 3.58 0.25% 3.44 -3.59% -3.84%

1
st
 Torsion 5.69 6.54 14.94% 6.54 14.94% 0.00%

4
th

 Flapwise 6.11 6.10 -0.23% 5.75 -5.95% -5.73%

3
rd

 Edgewise 6.66 6.03 -9.50% 5.54 -16.83% -8.10%


