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Abstract. Conveyor rollers are widely used in the mining industry for ore transportation. However, due to the 

severe operating conditions, these components may fail prematurely and thus cause high maintenance costs. The 

failure of these rollers is usually directly related to the service life of their bearings. This service life is greatly 

influenced by the angular deflection of the bearings. Within this context, this work presents an optimization 

study of a metallic conveyor roller. The purpose is to find a roller with lower mass, however, maintaining the 

angular deflection of the bearings in an acceptable range of operation, without significant changes in the roller's 

shape to do not affect the current manufacturing processes. To define the optimization design problem, the study 

is based on a Brazilian standard, where factors such as: type of roller, load, allowable stresses and angular 

deflections are defined. The optimization algorithm is coupled to a radial basis functions (RBF) metamodel 

which predicts the structural response of the roller. The RBF metamodel is built, and iteratively refined, through 

finite element analyses performed in the commercial code Ansys. The optimization results indicate the 

possibility of obtaining a roller design with lower mass and higher stiffness than those manufactured nowadays. 
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1  Introduction 

The use of conveyor belts is an efficient and widely used transport alternative in the mining sector. This 

means of ore transportation is carried out with the movement of a belt, supported by several rollers, over which 

the ore is dumped. The maintenance of these rollers, however, besides generating a high annual cost, promotes 

risks to the physical integrity of the operator responsible for the replacement of the component after its failure 

and due to its high mass. Therefore, the study of these rollers is extremely important and is the focus of this 

work, where ideal dimensions are searched, aiming to reduce the mass while ensuring that the roller design 

requirements based on the standard ABNT NBR 6678.2017 [1] are respected. 

A roller commonly used in these conveyor belts is selected as the object of study. A parametric structural 

optimization is performed in order to find a geometry with the same original design, however changing only 

some dimensions of pre-established parameters, such as, for example, the diameter of the shaft where the 

bearings are supported. Thus, it is considered that no significant changes in the manufacturing processes are 

necessary, which would generate higher costs for their production. 

In an optimization process, regardless of the selected solution method, several iterations are usually 

performed, which can require a high computational time and cost. Depending on the complexity of the problem, 

using only numerical simulations becomes impractical [2]. In these situations, an alternative is the use of 

metamodels to reduce the computational cost and the number of iterations necessary to carry out the 

optimization. According to [3], a metamodel, (or surrogate model) is a simplified model to approximate and 

replace a high-fidelity model. In practice, it corresponds to an approximate function that represents an 

experiment or physical phenomenon, being built from a number of sample tests from simulations. These 

concepts are employed here through two computational tools: the finite element commercial code Ansys 

Workbench and the Matlab platform. In the first, static analysis is performed simulating the operating conditions 

of the roller, and from them, stress distribution and displacements of the roller are obtained for different values 

of the design parameters. In the second one, a metamodel and an optimization scrip, which interacts with the 

finite element code to find the optimal design parameters, are developed. 
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2  Theoretical fundamentation 

2.1  Conveyor belt rollers 

Conveyor belt rollers structurally consist of three types of structural components: bearings, shaft and 

rollers. The bearings are responsible for allowing the rotational movement of the roller, while transferring the 

load received in the system to the shaft. The shaft supports the load of the roller and is fixed on two supports at 

its ends, preventing its vertical and axial movement. The rollers, on the other hand, directly receive the 

application of force and are constantly in contact with the belt. Regarding the selection, operational conditions 

and dimensioning of these components, manufacturers follow the ABNT NBR 6678.2017 recommendations. 

Following the standard, factors such as: load applied, type of roller, maximum bending stress, maximum 

deflection angle and roller dimensions are taken into account based on the belt width and the transported 

material. 

According to [1], the idler studied is classified as a triple load roller, in which it receives this nomenclature 

due to its function of supporting the weight of the ore along the belt, and in its original configuration, to have 

three rollers positioned side by side on the same easel, as shown in Figure 1. 

 

Figure 1. Positioning of triple load rollers ([1]) 

 
Among the three rollers, the one that is most susceptible to fail, conditioned to receive a greater weight, is 

the one that is positioned at the center of the configuration, which according to [1], for a shaft diameter of 45 

mm, must support a load of 11662 N, and the maximum bending stress should be lower than 100 MPa. In the 

region where the bearings are positioned in the shaft, the allowable angle of misalignment is nine minutes (9’). 

This angle is represented by β (see Figure 2). 

 

 
Figure 2. Shaft deflection representation (adapted from [1]) 

 

The area corresponding to the load which is transmitted from the belt to the roller is obtained through Hertz 

contact equations [5]. Although the belt is a hyperelastic material, the contact stress values are very low, due to 

this a linear-elastic behavior is considered in this calculation. Also, taking into account the Saint-Venant’s 

principle, a constant contact load distribution is assigned because the higher stresses are located far from the 

applied load. Thus, the value found for the width of the contact band is 12.4 mm. The dimensions of this band do 

not have much influence on the deflection caused in the shaft, however, it is important in the intensity and 

distribution of the stresses over the roller. 

2.2 Metamodeling based optimization 

According to [6], the generalized modeling process using metamodeling is performed in three stages: (i) 
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selection of sampling points via DOE (Design of Experiments), (ii) construction of the metamodel and (iii) 

validation. In the first stage, “experimental” points (sample) are generated, each sample corresponding to a 

different combination of parameters. The choice of technique to perform these combinations has a great 

influence on the accuracy of the developed metamodel [6]. Here, the Latin hypercube method is employed 

because the distribution of points throughout the space of each variable occurs in a uniform manner. The sample 

points are located so that there is no superposition of the orthogonal projections of these points over the axis. As 

the Latin hyperbube algorithm can generate points randomly, this consequently does not guarantee that the 

design domain is properly covered. Hence, the more points are used, the better the representation of the original 

function will be. 

From the points defined in the DOE and their responses after simulations, the metamodel is constructed. In 

this study, radial basis functions (RBF) is chosen as the metamodeling method. According to Forrester, Sobester 

and Keane [7], RBF technique corresponds to an interpolation in which it combines several bases, which are 

simple and radially symmetrical functions centered on the various points spread over the domain. In order to 

built a more accurate metamodel, it is customary to use new points (i.e., infill points) to be simulated and include 

them in the sampling points dataset to refine the metamodel during the optimization process. 

3  Methodology 

3.1 Numerical simulation of the idler roller 

In the Ansys Workbench finite element software, static analyses of the roller are performed to build the 

initial metamodel and to update it using infill points. Aiming to save computational time, as shown in Figure 3, 

only a quarter of the geometry is modeled and symmetric conditions are imposed. An external distributed load 

equivalent to 2915.5 N, which corresponds to a quarter of the total load, is imposed to the model. Another 

feature that is used in the finite element modeling is the representation of bearings as springs, because the mesh 

of this type of element, independent of refining, do not guarantee convergence of results for the stress. The 

spring stiffness value used is 94856 N/mm (corresponding to ½ of the total value due to symmetry), which 

calculation is based on Gargiulo [8]. 

 

 
Figure 3. Solid model of the roller (1/4 of the geometry) 

 

The finite element type defined for the mesh had both hexahedral and tetrahedral formats, of average size 

of 6mm, found after a mesh convergence study, and which allowed an acceptable precision for the purposes of 

the work. 

The material of the roller and shaft is a low carbon steel, with the following properties: Poisson ratio of 0.3, 

Young’s modulus of 210 GPa and mass density of 7850 kg/m3. 

The results sought for the simulations are: the maximum von Mises stress (SVM) in the roller, as shown in 

Figure 4, and the minimum and maximum displacements in the roller and in shaft in the region where the 

bearings are positioned. With these displacements, it is possible to obtain the angular deflection of the shaft in 

the bearing region (. 
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These results, together with the definition of the roller mass, are interpreted in a Matlab script that uses 

them in the optimization algorithm calculations. 

 

 
 

 
 

Figure 4. Von Mises stress distribution (initial design) 

3.2 General aspects of the optimization 

According to [4], an optimization problem is defined mathematically as the minimization or maximization 

of an objective function which it may be subject to constraints of equality or inequality. Within this function, 

there are variables (parameters) that are understood as values that are modified in the search for the optimal 

point. The constraints stipulate boundaries that must be met to make the design viable. The design variables of 

the problem here studied can be seen in a cross section representation of the roller, shown in Figure 5, and the 

formulation of the optimization problem is defined as: 

 

 

{
  
 

  
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑀𝑎𝑠𝑠 (𝐷1, 𝐷2,𝐷3, 𝐷4)}

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

{
 
 

 
 
134 mm ≤ 𝐷1 ≤ 168 mm
110 mm ≤ 𝐷2 ≤ 131,6 mm
87 mm ≤ 𝐷3 ≤ 91 𝑚𝑚
54 mm ≤ 𝐷4 ≤ 63 mm

𝑆𝑉𝑀 ≤ 100  MPa
 ≤ 9’

 (1) 

 

If for a given point one or more constraints are violated, a penalty is assigned to the objective function, 

making its value higher for that point. The definition of the penalty function is based on the methodology 

described by [9], where, by adapting to the problem here studied, it can be written as follows:  

 

 
𝑓𝑝(𝐱) = 𝑓(𝐱) + ∑((

𝑅𝑒𝑐(𝐱)

𝑔𝑖(𝐱)
)

𝑘

− 1) ∙ 𝑓(𝐱) ∙ 𝛿𝑖

𝑚

𝑖=1

 (2) 

 

where, 𝑓𝑝(𝐱) is the penalized objective function, 𝑓(𝐱) is the non-penalized objective function, 𝛿𝑖 a parameter 

that has value 1 if, the 𝑖th constraint is violated, or value 0 if the constraint is not violated, 𝑅𝑒𝑐(𝐱) is the 

constraint value at each point studied and 𝑔𝑖(𝐱) the reference values of each constraint, for example: 𝑆𝑉𝑀 ≤

100 MPa. In the equation, 𝑘 is a user-defined exponent. 
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Figure 5. Representation of the design variables D1, D2, D3 and D4 in mm 

 

Figure 6 shows a flowchart of the metamodeling based optimization strategy used here. As already 

mentioned, the finite element analyses are performed using Ansys Workbench and the optimizer used over the 

metamodel function is the Globalized Bounded Nealder-Mead (GBNM) [10]. 

 

  
Figure 6. Optimization process based on metamodeling 

 

The process is started with the development of the DOE, where from the points generated the simulations 

are carried out. With the results of each simulation, the constraints are evaluated and depending on the value 

obtained the mass may or may not be conditional on the penalty. Based on these results, the metamodel is 

developed and then submitted to the optimization algorithm. After obtaining the optimal point of this initial 

metamodel, a new point is created randomly. With this, the finite element simulations are carried out for these 

two points (the best one found and a random one), and, in this way, the metamodel is updated and so on until a 

previously defined total number of iterations is reached (stopping criterion). 

4  Results 

Three optimization cases were carried on a 6 GB RAM computer. The first one has 20 simulations (case 1), 

the second one 50 simulations (case 2) and the third one 80 simulations (case 3). The time required to perform 

the optimization in case 1 was approximately 1h, being 15 simulations used in the DOE to build the metamodel, 

three simulations with the optimal points found in the developed metamodels and the other two using random 

values for the variables, alternating between the metamodel’s optimal point and the random choice. In case 2, the 

optimization served only as a test to verify the behavior of the metamodel in relation to the violation of the stress 
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constraint, since in case 1 this constraint is not violated. In case 3, similarly to case 2, it served as a metamodel 

test but focused on violating the angle constraints. In order to analyze the constraints, it was stipulated for case 2 

that instead of 100 MPa, the stress should not exceed 60 MPa, and for case 3, instead of 9', the deflection angle 

should not exceed 5’. 

In case 2, the required time to perform the optimization was approximately 2:18h, using 30 simulations in 

the DOE, and the latter 20 simulations were obtained with the 10 optimal points found in the developed 

metamodels and the other 10 using random values for the variables, alternating between the metamodel’s 

optimal point and the random. In case 3, the time was 2:12h, with 30 simulations for the DOE, and for the other 

50, 25 simulations of optimal points and 25 simulations of random points. 

The roller mass of the initial design is 69.136 kg and, after the optimization in case 1, it reached 46.795 kg. 

The evolution of the mass reduction during the optimization process can be observed in Figure 7. 

 

 
Figure 7. Roller mass evolution in case 1 

 

In case 2, after the optimization, the value of 49.119 kg is found for the objective function. The evolution of 

the mass for this case can be observed in Figure 8. 

 

 
Figure 8. Evolution of the roller mass in case 2 

 

In case 3, the value found of the objective function is 47.269 kg at the end of the optimization process. The 

evolution of the mass in this case is present in Figure 9. 

 

 
Figure 9. Evolution of the roller mass in case 3 
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The values obtained for this final roller configuration compared to its initial version are present in Table 1. 

In this table, the mass values do not include the bearing masses and the components of the roller labyrinths seals.  

  

Table 1. Initial and optimal roller's configurations 

Propriety Initial design 
Final design 

(case 1) 

Final design 

(case 2) 

Final design 

(case 3) 

Nº of simulations - 20 50 80 

Mass (kg) 69.136 46.795 49.119 47.269 

𝐷1(mm) 154.00 168.00 167.04 167.92 

𝐷2 (mm) 111.60 110.00 110.00 110.00 

𝐷3 (mm) 91.00 91.00 89.82 91.00 

𝐷4 (mm) 54.00 54.00 54.04 54.86 

SVM (MPa) 17.065 69.272 57.260 67.980 

 (’) 4.962 5.116 5.091 4.860 

5  Conclusions 

With the optimization strategy employed here, respecting the design constraints, a reduction of the roller's 

mass around 32.3% was achieved in case 1. For this case, a small amount of simulation points was required to 

build an accurate metamodel compared to the other two cases. This occurred because there were no constraints 

violations during the optimization process. For case 1, the corresponding values of the safety factors found for 

SVM and  were: 1.443 and 1.759. In cases 2 and 3, it was possible to demonstrate the functionality of the penalty 

function if the constraints are violated during the optimization process. 
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