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Abstract. The present paper discusses two penalty parameters — the penalty parameter of intermediate densities 

(PPID) and the penalty parameter of the density field gradient (PPDFG) — in the context of density-based topology 

optimization problems considering a Solid Isotropic Microstructure with Penalization (SIMP). Both parameters 

aim to control the influence of functional terms added to the cost functional to regularize the optimization problem.  

PPID aims to the reduction of intermediate densities regions and, consequently, finding out a better definition of 

the material contour. PPDFG, in its turn, has as its purpose to mitigate the checkerboard phenomenon. 

Displacements, strains, and stresses are obtained via the Finite Element Method, with relative densities defined at 

element nodes. The mathematical solution of the optimization problem is carried out taking into account the 

Augmented Lagrangean Method. The numerical experiment planning consisted of performing a series of 

combinations between the penalty parameters and different finite element meshes, to check their influence on the 

checkerboard phenomenon, mesh dependence, intermediate densities regions extension, structural topology, and 

values of the cost functional. In particular, the optimization problem aims to minimize the compliance of the 

structure with a constraint on the material volume. From the results obtained in this work, it is possible to verify 

that PPGDF can mitigate or inhibit the mesh dependence, avoid coarse contours, and the occurrence of the 

checkerboard phenomenon — conversely, for high values, extensive intermediate densities regions appear, causing 

a sharp increase in the structure compliance. In addition, PPGDF has a greater influence than PPID, which, for the 

optimization problem presented, exerted little variation in the compliance of the structure. 
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1  Introduction 

In the last decades, there have been several works on the application and development of techniques for 

topology optimization of continuum structures aiming to assist in the design of a structure that satisfies a certain 

set of constraints and minimizes one or more performance functions. In general, the topology optimization process 

seeks to determine the optimal topology by specifying the existence of the material or its absence. Among the 

optimization methods frequently used there are density-based methods (Bendsøe [1]; Bendsøe and Sigmund [2, 

3]), topological derivative (Amstutz and Novotny [4]; Amstutz et al. [5]), level set (Wang et al. [6]; van Djik et al. 

[7]) and evolutionary methods (Huang and Xie [8]). 

To solve an optimization problem using density-based methods, the design variables are relative material 

densities, ρ , where 0ρ =  and 1ρ =  indicate, respectively, the absence and the existence of the material. In 

particular, due to its simplicity and robustness, the density-based method, considering a Solid Isotropic 

Microstructure with Penalization (SIMP) (Bendsøe [1]; Bendsøe and Sigmund [2]), has been widely used in the 

most diverse problems. Intrinsic to the application of density-based methods to optimization problems involving 

the evaluation of functions or variables via methods of approximation and discretization, numerical instabilities 

may arise, e.g mesh dependency, checkerboard phenomenon, and local minimums (Bendsøe and Sigmund [3]; 

Sigmund and Petersson [9]). Besides, another point to be considered is obtaining a topology with a well-defined 

material boundary — i.e. a material-void transition zone tending to zero and without jagged boundaries.  

In order to overcome such adversities, different approaches have been proposed. In particular, Allaire and 

Kohn [10] propose the insertion of a term for energy functional so that any value of intermediate density is 

penalized, thus regions with a porous microstructure are reduced. Haber et al. [11] introduce the Perimeter Method 

in which a constraint on the perimeter of the topology is considered that leads to convergent solutions concerning 

mesh refinement. Petersson and Sigmund [12] add, to the classic compliance minimization problem with a 

constraint on the material volume, local constraints on the components of the density field gradient. Such 

constraints are controlled by a weighting parameter, allowing to change the complexity of the final topology — 
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and reduces or mitigates the appearance of a checkerboard and provides a mesh-independent solution. Sigmund 

[13] proposes a filter, to generate mesh independence, that modifies the sensitivity of an element considering its 

sensitivities in a small fixed neighborhood by a weighted average operation. Pereira [14], Fancello and Pereira [15] 

and Pereira et al. [16] propose a modification of the optimization problem by adding two functionals, each of them 

with its penalty parameter — the penalty parameter of intermediate densities (PPID) and the penalty parameter of 

the density field gradient (PPDFG) — with the main focus on a mass minimization problem with local stress 

constraints solved numerically via Augmented Lagrangian Method. In this case, the term for penalizing density 

gradients is intended to avoid or mitigate the checkerboard phenomenon. Such an approach is also used in the work 

of Silva et al. [17] in the solution of a compliance minimization problem with a constraint on the volume with an 

analysis aimed mainly at controlling discretization errors via h-adaptivity. Additionally, the works of Sigmund and 

Petersson [9], Diaz and Sigmund [18], Borrvall and Petersson [19], Borrvall [20], Hägg and Wadbro [21], among 

others, can be cited. 

In this context, the current work aims to systematically analyze the influence of PPID and PPDFG in the 

characterization of a structural optimization problem to minimize compliance with a volume constraint, 

considering the SIMP model. Numerical experiments are planned in such a manner to possibly assess energy 

functional, mesh dependency, checkerboard phenomenon, the extension of the material transition zones, and the 

complexity of the optimal topology. 

2  Formulation of the density-based topology optimization problem 

The topological optimization problem addressed in this work is the minimization of the compliance of a 

continuum structure with an equality constraint on the material volume considering a density-based method with 

a SIMP microstructure (Bendsøe [1]; Bendsøe and Sigmund [2]). The SIMP model allows a continuous relative 

densities field variation, ρ , between 0 (void) and 1 (solid material). For this formulation, the energy functional 

or cost functional, ( )c ρ , is given by 

 ( ) ( ) ( )( )u D u

T

s s1
c d

2
ρ

Ω

ρ ρ Ω= ∇ ∇∫ , with ( ) 0D D
q

ρ ρ ρ= , (1) 

where u  is the vector field of displacements and Ω  is the domain of the problem. In particular, the material 

constitutive tensor, Dρ , acts as a penalty for intermediate densities. Still in eq. (1), D0  is the constitutive stiffness 

tensor of the solid material (here considered isotropic and elastic) and q  is the exponent, whose literature suggests 

— based on topological sensitivity assessments — the cubic dependence for plane linear elasticity problems 

(Amstutz [22]). The equality constraint for the volume of the structure, 
V

h , is shown in eq. (2) and imposes that 

the volume functional, V , is equal to a fraction, λ , of the initial volume, 
0

V , 

 ( ) ( )V 0
h V V 0ρ ρ λ= − = . (2) 

At this point, it is worth mentioning that the current work seeks to evaluate the numerical solution of the 

optimization problem with a similar approach as presented in Silva et al. [17], as well as in the works of Pereira 

[14], Fancello and Pereira [15] and Pereira et al. [16] in the context of mass minimization problems with local 

stress constraints. Initially, two functionals, 
m

F  and Fρ , dependent on the relative density field, are added into the 

cost functional to regularize the problem. Subsequently, considering the Augmented Lagrangean Method 

(Bertsekas [23]), the volume constraint, 
V

h , is incorporated into the cost functional, eq. (1) , by the insertion of a 

quadratic external penalty, Kr , and a Lagrange multiplier, Kη . In this way, the Kth minimization sub-problem is 

presented in eq. (3) with only a lateral constraint on the design variables (i.e. the relative densities): 
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{ x     x

2
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ρ ρ Ω

∞∈
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 + ( )  (3) 

For the proposed problem, the Fρ  functional aims to inhibit the appearance of numerical instabilities such as 

the checkerboard (Pereira [14]; Fancello and Pereira [15]; Pereira et al. [16]; Borrvall [20]); and the 
m

F  functional, 

in its turn, seeks to mitigate the occurrence of extensive intermediate densities regions (Allaire and Kohn [10]; 

Allaire and Frankfurt [24]; Pereira [14]; Fancello and Pereira [15]; Pereira et al. [16]). These functionals are 

expressed mathematically as: 

 ( ) ( )mF 1 d
Ω

ρ ρ ρ Ω= −∫    and   ( ) ( ) ( )T
F dρ

Ω

ρ ρ ρ Ω= ∇ ∇∫ . (4) 
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Furthermore, 
m

r  and rρ  are called, respectively, as the penalty parameter of intermediate densities (PPID) and the 

penalty parameter of the density field gradient (PPDFG); and a minimum value for density 0.01minρ =  was 

adopted to avoid numerical singularities (Pereira et al. [16]; Fin et al. [25]).  According to Bertsekas [23], eq. (3) 

represents the Kth optimization problem from a sequence of finite problems that must be solved. After the 

convergence of each subproblem, the Kr  and Kη  parameters are updated taking into account the standard updating 

rule given by (Bertsekas [23]; Silva et al. [17]) 

 ( )K 1 K K Vη η 2r h ρ+ = + , (5) 

 { ; }max
K 1 K Kr min zr r+ = , with z 1>  e Kr 0, K> ∀ ∈ℕ , (6) 

where z  is a constant scalar that defines the increase rate of Kr , máx
Kr  is a higher limit for Kr , and ℕ  is the set 

of natural numbers. To solve each problem, the Conjugated Gradient Method was used for search direction 

determination; and the Golden Section Method for calculating the step size along this direction. Both methods can 

be found in Arora [26]. Besides, the Adjoint Method is used to obtain the sensitivity analysis of the Augmented 

Lagrangean functional. 

3  FEM model and numerical planning 

The mechanical model evaluated in this paper is shown in Fig. 1 and consists of a simply supported beam 

with a central load P.  Except for the definition of material and geometric parameters, this model has been studied 

in numerous works in the scope of minimizing compliance with a volume constraint (Costa Jr. and Alves [27]; 

Tovar and Khandelwal [28]). Both essential and natural boundary conditions are applied along a length, L, of the 

edge to avoid stress concentration. A two-dimensional linear elasticity problem was created considering a plane 

stress state with mechanical properties, geometry, and optimization parameters summarized in Tab. 1. To reduce 

the computational cost, the model was implemented considering the symmetry about the vertical axis. The domain 

discretization was carried out with a criss-cross pattern, with Constant Strain Triangle elements, to obtain two 

distinct meshes (one coarse and one fine) to assess the mesh dependence on the studied optimization problem. For 

both meshes, factorial planning of the penalties parameters 
m

r  and rρ  was carried out over a wide range to enable 

an assessment of their influence on the optimal structure obtained. This procedure was performed in Matlab®. The 

initial density field was defined as a homogeneous field that satisfies the equality constraint on the material volume. 

Besides, the quadratic external penalty for the first subproblem, 
ini

r , was set as four times the energy functional 

for the initial density field; and its maximum value defined as max

K inir 100r= . The Lagrange multiplier for the first 

subproblem is equal to zero. Adding up, it was considered that the Kth problem converged when the following 

criteria are met: (i) ρ ρ
3

K 1 K 10 ndv
−

+ − < , (ii) 
4

K 1 K iniL L 10 L
−

+ − < , and (iii) max

K Kr r= . In this case, ndv 

indicates the number of design variables under analysis. 

 
 

 

 

 
Figure 1. Mechanical model scheme. 

 

Table 1. Numerical planning. 

 Category Parameter Value 

F
E

M
 m

o
d

el
 

Mechanical 

properties 

Young’s Modulus [Pa] 1 

Poisson's Ratio [-] 0.3 

Geometry 

A [m] 20 

B [m] 12 

Thickness [m] 1 

L [m] 1 

Neumann 

boundary 
P [N] 1 

Domain 

discretization 

Coarse mesh 
Criss-cross [20;24]  

(1920 elements) 

Fine mesh 
Criss-cross [40;48]  

(7680 elements) 

Optimization 

parameters 

m
r [N.m] 0   0.25   0.50 

rρ [N.m] 0   0.005   0.05    0.5 

λ  0.3 

z  1.5 
 



Assessment of penalty parameters in density-based topology optimization 

CILAMCE 2020 

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC 

Foz do Iguaçu/PR, Brazil, November 16-19, 2020 

4  Numerical results and discussion 

The optimal topologies for the different sets of penalty parameters, according to the numerical planning 

described in Tab. 1, are presented for the coarse and fine meshes, respectively, in Fig. 2 and Fig. 3. For both 

meshes, considering fixed 
m

r  values, one should note its influence on the optimal topologies found. Corroborating 

results exposed by Pereira [14] and Pereira et al. [16], as rρ  increases, there is a reduction in the number of 

ramifications of the optimal structure (i.e., their complexity decreases). Such behavior is justified since this 

parameter is associated with the penalty of the density field gradient. To put it another way, its increase tends to 

lead to topologies with a reduced variation of this field, evidenced here by the reduction of the complexity of the 

structure. On the other hand, if rρ  is excessively high, there is a tendency to eliminate both holes in the domain 

and high regions with intermediate densities, which should be avoided. Furthermore, the higher rρ  value, the 

greater the tendency to obtain topologies with smoother boundaries, avoiding jagged boundaries and facilitating 

the posterior design aiming the structure manufacture.  

Regarding the checkerboard phenomenon occurrence — being this the main reason for the insertion of the 

penalty of density gradients term to the cost functional (Pereira et al. [16]) — this numerical instability did not 

markedly feature for both meshes evaluated. Nevertheless, the optimal topology in Fig. 3, considering both penalty 

parameters null, exhibited this phenomenon in some regions of its domain. 
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Figure 2. Optimal topologies, for the coarse mesh, as a function of m
r  and rρ  parameters. 

 

Another relevant aspect in optimization problems solved via density-based methods is the mesh dependence 

(Bendsøe and Sigmund [3]; Sigmund and Petersson [9]). A comparison between Fig. 2 and Fig. 3 shows that the 

increase of rρ  tends to generate optimal solutions with no mesh dependence. That is, similar topologies are found 

for meshes with distinct refinements. Indeed, numerical experiments suggest that r 0.05ρ =  is the most adequate. 

Such behavior is also pointed out in the numerical experiments conducted by Silva et al. [17] in the scope of 

minimum compliance with a volume constraint using the same approach analyzed here. 
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Likewise, an analysis of the effect of 
m

r  variation, for fixed rρ values, can be performed. In general, 

considering low rρ  values  (between 0 and 0.005), Fig. 2 and Fig. 3 show that an  
m

r  increase leads to a tendency 

of enhancement of the structure complexity. Conversely, for higher values of rρ  (between 0.05 and 0.5), no 

significant changes in the connectivity of the structure are identified and the reduction of intermediate densities is 

remarkable. 

Therefore, given the mechanical model evaluated and the numerical experiments carried out here, a joint 

analysis of Fig. 2 and Fig. 3 points out that the appropriate values are  0.5
m

r =  and 0.05rρ = . Not to mention that 

the fine mesh topology should be preferred due to its fewer discretization errors. Moreover, Silva et al. [17] 

emphasize this aspect, evaluating the same problem addressed here, and propose an h-adaptivity technique to 

control discretization errors, which guarantee solutions with global errors, evaluated according to the energy norm, 

below a prescribed allowable error value. 
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Figure 3. Optimal topologies, for the fine mesh, as a function of 
m

r  and rρ  parameters. 

 

Additionally, similar behavior is observed in Fig. 4 between the coarse and fine meshes regarding the 

quantitative evaluation of the energy functionals, intermediate densities penalty, and densities gradient penalty. 

The increase in rρ  generates a reduction in Fρ  functional; as already discussed and verified qualitatively by Fig. 

2 and Fig. 3. Such reduction is provided by the smoothing of the density field, represented by regions with 

intermediate densities with a consequent increase in 
m

F . Thus, accompanied by topological solutions with an 

increase in intermediate densities (i.e. more porous material regions), there is an increase in the energy functional. 

On the other hand, 
m

r  has little influence on the structure’s energy, mainly for higher rρ  values. 

Besides, as observed in Figs. 2 and Fig. 3 — and already pointed out by several studies (Maute and Ramm 

[29]; Costa Jr. and Alves [27]; Silva et al. [17]) in structural optimization problems solved via density-based 

methods and with design variables linked to finite element discretization — finer meshes generate topologies with 

a better definition of the material-void interface. In this context, concerning the methodology applied, 
m

F  and Fρ  

might be interpreted as a quantitative measure of the material boundary resolution, where higher Fρ  and lower 
m

F  



Assessment of penalty parameters in density-based topology optimization 

CILAMCE 2020 

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC 

Foz do Iguaçu/PR, Brazil, November 16-19, 2020 

for a solution with no mesh dependence indicate a better-defined topology (Silva et al. [17]). For instance, 

considering the topology with 0.5
m

r =  and 0.05rρ = , the coarse mesh has 5.8
m

F =  and 52.7Fρ =  while the fine 

mesh has 5.2
m

F =  and 58.3Fρ = . 

In the light of the above, the modification in the optimization problem presented suggests that both penalty 

parameters evaluated must be carefully defined, since higher or lower values of them might cause or even 

accentuate mesh dependence, widen material-void transition, non-smooth boundaries, and checkerboard 

occurrence. 
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Figure 4. Maps of functional values as a function of m
r  and rρ  parameters. 

5  Conclusions 

From the present work — which applies a density-based topology optimization to minimize compliance with 

a constraint on the material volume and whose objective is to discuss the influence of two penalty parameters, 
m

r  

and rρ , in the optimal structures obtained — it can be concluded that: 

(i) The penalty parameter rρ  has a more pronounced influence than 
m

r  on the problem's energy functional, 

which increases proportionally with rρ . Low 
m

r  values might generate regions of intermediate densities in the 

topology and this occurrence must be minimized or avoided. In contrast, lower rρ  values enhance the appearance 

of complex final topology, mesh dependence, more coarse boundaries, and checkerboard. However, when rρ  is 

higher, large regions of material-void transition can appear in the topology, causing increased compliance. 

(ii) To have an optimum structure that can be manufactured, both parameters studied must be carefully 

defined to avoid the instabilities and problems described. Adding up, although the parameter rρ  provides a trend 

of mesh independence; finer meshes generate topologies with a better definition of the structure boundaries and 

with smaller discretization errors. 
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