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Abstract. This paper proposes the analysis of Sigmoid, Hyperbolic Tangent and Elliot functions in the PSO 

algorithm for reconfiguration of electrical system. The aim of reconfiguration is to reduce losses in the electrical 

system.  The optimization algorithm used the binary PSO heuristic method and was developed in MATLAB© 

software using the MATPOWER toolbox to solve the power flow. The reduction of real losses is the objective 

function, where each particle is the state of the branch switch, open or closed. The methodology was applied to 

the IEEE-30 Bus, IEEE-118 Bus and to a Planned Example Case of a Brazilian Power Distribution Company. It 

was observed that the Hyperbolic Tangent and Elliot function performed well in optimizing the power system 

reconfiguration to reduce losses in the IEEE-30 bus, IEEE-118 bus and 138 kV planned example case. 
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1  Introduction 

The reconfiguration of electrical systems can be used as a control tool for operation of the distribution and 

transmission power system to ensure the continuity of supply or the system parameters adaptation. The aim of 

reconfiguration can be the losses reductions, load distribution or regulation of voltage level. The reconfiguration 

problem is solved from the best combination of the system switches. The high number of switches in the power 

system increase the complexity of the problem, because each combination of switches represents a topology for 

the system that can be implemented. The reconfiguration of electrical systems with heuristic methods aimed at 

reducing active losses was discussed by Shirmohammadi and Hong [1]. The method employed involved 

calculating the power flow to the system with all switches closed and then opening switches that had the lowest 

circulating current with the verification and maintenance of compliance with all loads and operational limits. The 

bio-inspired heuristic methods search optimal solutions through probabilistic rules.  

The particle swarm optimization (PSO) method was first described by Kennedy and Eberhart [2], which were 

based on concepts of artificial intelligence, bird clustering theory, schooling behavior and theories of particle 

swarms. The PSO was used to reconfigure radial power flow with 33-bus. Shetty and Ankaliki [3] used the PSO 

to reduce losses and improve the voltage profile of the radial system. Nasir [4] proposed the PSO to optimize the 

network by reconfiguration of the radial system and the allocation of distributed generation. And Khalil [5] 

considered the application of the PSO to optimize the allocation of capacitors with the system reconfiguration. 

This paper proposes the application of Sigmoid, Hyperbolic Tangent and Elliot functions in the PSO to the 

reconfiguration problem of electrical systems. The motivation of this paper is to analyze the behavior and the 

viability of these functions in the binary PSO algorithm with application in electrical power system. The 

methodology aims to be applied in meshed electrical systems with automated switches available in each branch of 

the system, operating them individually or together in search of the optimal system configuration to reduce real 

technical losses. This paper is divided in Background, Particle Swarm Optimization (PSO), Results and 

Conclusion. 
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2  Background 

2.1 Power Flow 

The power flow is performed to control the system in real time and to study expansion projects of the electric 

power system. The mathematical model of the electrical system considers the modelling of the transmission lines 

through their resistance, inductance and susceptibility; the substations as connection points between lines, loads, 

generation and reactive compensation devices; loads and generations by real and reactive power values. 

The power flow calculation has as input the lines impedances, transformer impedances and the specification 

of the values of real and reactive demand in each bus. The Newton-Raphson (NR) iterative method works with 

four electrical quantities: the voltage magnitude (Vk), voltage argument (k), real (Pk) and reactive (Qk) power in 

the bus k under steady state. The real and reactive power is computed in (1) and (2), respectively, where the terms 

of the admittance matrix are written by magnitude (Ykn) and argument (kn). The admittance matrix is composed 

of the admittances of the systems branches. The bus is named according to the input variables. The V bus is 

considered a slack bus, PQ is the load bus and PV is the bus with controlled voltage. 

𝑃𝑘
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The difference between the specified and calculated values for real and reactive power is given in (3) e (4), 

respectively. The voltage magnitude and argument are computed in (5). 
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2.2 System Reconfiguration 

System reconfiguration can be performed to accommodate variations in load and generation values, at the 

request for new entrants to the system or by seasonality. Typically, system reconfiguration is used to find an 

optimal topology of the system given a load profile. The reconfiguration problem is solved using the best 

combination of the various switches. The high number of switches in the systems increases the complexity of the 

problem, since each combination of switches represents a topology that this system can assume. Some 

combinations cannot be used, as they do not comply with voltage and load parameters, in addition to which, in 

some situations, points in the system are without power supplies as shown by Shirmohammadi and Hong [1]. The 

total number of possible combinations between the system switches is 2n, where n represents the total number of 

switches. 

3  Particle Swarm Optimization (PSO) 

The particle swarm optimization technique is used to explore a determined search space and find solutions 

capable of achieving the defined objective for the particles. 

In the PSO, each particle represents a solution to a given problem, this particle is a vector (𝑥𝑛𝑝
𝑖

 
) that 

corresponds to the particle’s position in the search space. At each iteration, the particles update their positions 
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according to their previous position, velocity, position of the best performance of the particle (pbest) and position 

of best performance of the whole cluster (gbest). Where np is the particle number, i is the number of the current 

iteration and i+1 is the number of the new iteration. 

Velocities are updated by the sum of the cognitive term, inertia term and the social learning term according 

to (6). The inertia term depends on the velocity in the previous iteration (𝑣𝑛𝑝
𝑖

 
) and a weighting factor of inertia 

(). The cognitive term has a random number (r1), a cognitive parameter (c1) and the variation between the point 

of best individual performance (pbest) and the current point of the particle. The social learning term has a random 

number (r2), a social learning rate (c2), the variation between the point of best global performance (gbest) and the 

current point of the particle. The position of the particle is computed in (7). 
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The PSO can operate with discrete binary variables, for this, the particles start to change their trajectory 

according to the probability that coordinate must assume the value 1 or 0 as shown by Kennedy and Eberhart [6]. 

In this variation, the velocity function stops defining the direction in which the particle will go and becomes a 

decision agent. The higher the velocity function, the more likely it is that the particle will assume a value of 1. The 

velocity function in (6) remains unchanged and therefore it is necessary to apply a normalization function over its 

final value. The sigmoid function is used to ensure that the velocity function is translated as probability and that 

its value is in the range [0,1]. The particles are updated by comparing the sigmoid function in (8) and a vector of 

the random numbers 𝜌np
i+1  between 0 and 1 according to (9). 

𝑓(𝑣𝑛𝑝
𝑖+1) =

1

1 + 𝑒𝑥𝑝−(𝑣𝑛𝑝
𝑖+1)

 (8) 

𝑥𝑛𝑝
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1, if 𝜌np
i+1< 𝑓(𝑣𝑛𝑝

𝑖+1)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     
 (9) 

The classical and binary PSO present different results for variation of velocity. In the classic PSO, the higher 

values of the velocity function represent a positive factor for increasing exploration in the search space. And in the 

binary PSO, the increase in velocity brings with it the probability that the particle takes on a value and does not 

change, restricting the exploration of the search space. Therefore, the binary PSO has limits for the velocity 

function so as not to allow the sigmoid function to approximate to the value 0 or 1 as shown by Khanesar [7]. 

3.1 Binary PSO for System Reconfiguration 

This paper applied the binary PSO to reduce losses in the meshed electrical system. Each particle is composed 

of vector of size n, which contains the combination of commands for the n switches of the system. The approach 

considers that all interconnections in the system have a switch, to test the performance of the algorithm. Therefore, 

the number of switches n is equivalent to the total number of connections available. The particles were started by 

a random function and the initial velocity was set to 1 for all particles, that is, all switches were in the closed state. 

The state of the open switch was set to 0. 

The MATPOWER toolbox, created by Zimmerman [8], was used to calculate the power flow using the 

Newton-Raphson method. In this algorithm, voltage limits of 95 and 105% of the nominal voltage as voltage levels 

for systems operating above 69 kV according to Brazilian regulatory agency ANEEL [9]. 

The objective function used was the real losses of the system in (10). Where IAB is the current in the branch 

AB and RAB is the resistance in the branch AB. 

|𝑃𝑡| = ∑ 𝐼𝐴𝐵
2 ∙ 𝑅𝐴𝐵 (10) 

The velocities values are updated in each iteration according to (6). The velocity limits were defined as [-4,4] 

so that to prevent the normalized velocity function from approaching 1 or 0, limiting the algorithm search space 

as shown by Khanesar [7].  
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The particles are updated at each iteration through (9), where a comparison is made between a random value 

and the value of the velocity function using its representation of probability calculated using the sigmoid function 

in (8). This paper proposes the use of the hyperbolic function in (11) and the Elliot function in (12) in the binary 

PSO to reconfiguration of the electrical system. The flowchart of the algorithm is shown in Fig.1. 

𝑓(𝑣𝑛𝑝
𝑖+1) =

𝑡𝑎𝑛ℎ (𝑣𝑛𝑝
𝑖+1)  + 1
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𝑣𝑛𝑝
𝑖+1

1+|𝑣𝑛𝑝
𝑖+1|

+ 1 

2
 

(12) 

 

Figure 1. Binary PSO flowchart for the electrical system reconfiguration. 

4  Results 

4.1 Electrical systems 

The paper proposal was applied to reduce losses in the IEEE-30 bus, IEEE-118 bus and 138 kV planned 

example case of a Brazilian Power Distribution Company. The mathematical model of the IEEE-30 and IEEE-118 

bus system is available in the MATPOWER toolbox. Initially, it was considered that all branches have a switch 

and the initial state was normally closed. The IEEE-30 bus system has a Slack bus, 5 PV buses, 24 PQ buses and 

41 branches as described by Christie [10]. The total number of switches combinations is approximately 2.2 trillion 

possibilities. The IEEE-118 bus system has a Slack bus, 53 PV buses, 64 PQ buses and 186 branches as described 

by Christie [11]. The total number of switches combinations is approximately 9.811055 possibilities. 

The algorithm was used to propose a new configuration to a meshed electrical system and designed to operate 

in the energy distribution at voltage level of 138 kV of a Brazilian Power Distribution Company. Figure 2 presents 

the diagram of the system that has 34 branches connecting 28 substations. In this system, each bus represents a 

substation, where generation supply and load are connected. This system is based on a project to expand a real 

distribution system, the generation and load values used were extracted from the system in operation. The total 

number of switches combinations is approximately 17 billion possibilities. 
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Figure 2. Diagram of the 138 kV power distribution system. 

4.2 Analysis of Results 

The inertia coefficient () was defined as 1 to prevent the normalized values of the normalized velocity 

function from tending to one of the limits according to Khanesar [7]. In this paper, the algorithm used the value 1 

for the cognitive parameter (c1) and the social learning rate (c2) allowing the influence of these components to be 

defined by random number r1 and r2. The binary PSO of this paper was written in MATLAB© and were performed 

using an Intel® CoreTM i7-8565U, CPU @1.80 GHz and11.9GB of RAM. 

The best result for loss reduction in the IEEE-30 bus system was obtained using the sigmoid function. In 

these terms 5,000 particles are evaluated, where each of the initial 50 particles is reconfigured with 100 iterations. 

Real losses were reduced by 6.47% considering the switches open in the branches 12-15, 14-15, 16-17 and 24-25. 

The Hyperbolic Tangent function presented a loss reduction of 6.38% and the Elliot function maintained the same 

loss value as the initial condition.  

The best result for loss reduction in the IEEE-118 bus system was obtained using the Hyperbolic Tangent 

function. In these terms 50,000 particles are evaluated, where each of the initial 50 particles is reconfigured with 

1,000 iterations. Real losses were reduced by 4.64% considering the switches open in the branches 1-2, 13-15, 14-

15, 12-16, 23-24, 25-26, 31-32, 27-32, 15-33, 52-53, 56-57, 51-58, 61-64, 65-66, 47-69, 49-69, 68-69, 70-75, 68-

81, 77-82, 94-100 and 105-106. The Sigmoid function presented a loss reduction of 3.81% and the Elliot function, 

0.15%. Figure 3 shows the voltage profile within the regulatory limits for IEEE-118 bus. 

The optimal loss value for the 138-kV planned example case system was 2.69% with Sigmoid and Hyperbolic 

Tangent functions. In these terms 50,000 particles are evaluated, where each of the initial 50 particles is 

reconfigured with 1,000 iterations. The optimal configuration has the switches open in the branches 6-15, 8-10, 

16-22, 23-24 and 11-28. The Elliot function presented a loss reduction of 2.62%. Figure 4 shows the voltage profile 

within the regulatory limits for 138-kV planned example case system. The reconfiguration proposed reduces the 

real losses of this system by approximately 0.18 MW. This value represents around 1.58 GW per year of reduction 

in technical losses. These values contribute to the analysis of economic viability and can be used as a decision 

factor for improvement for this distribution system. 

Table 1 presents the losses, percentage loss reduction, runtime, and convergent combinations for the Sigmoid, 

Hyperbolic Tangent and Elliot functions for IEEE-30 bus, IEEE-118 bus and 138-kV planned example case. 
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Figure 3. Voltage profile of IEEE-118 bus system. 

 

 

Figure 4. Voltage profile of 138-kV case. 

 

Table 1. Coefficients in constitutive relations 

IEEE-30 Bus System 

 
Initial 

condition 
Sigmoid 

Hyperbolic 

Tangent 
Elliot 

Real Losses (MW) 2.4438 2.2856 2.2877 2.4438 

Loss Reduction (%) - 6.47 6.38 0 

Runtime (s) - 60.33 69.45 73.84 

Convergent Combinations - 2,274 636 347 

IEEE-118 Bus System 

Real Losses (MW) 132.8629 127.7959 126.6943 132.6548 

Loss Reduction (%) - 3.81 4.64 0.15 

Runtime (s) - 1476.5 1530.1 1128.27 

Convergent Combinations - 30,769 9,119 5,812 

138-kV Planned Example Case of Brazilian Power Distribution Company 

Real Losses (MW) 6.8351 6.6508 6.6508 6.6556 

Loss Reduction (%) - 2.69 2.69 2.62 

Runtime (s) - 62.57 73.58 73.22 

Convergent Combinations - 2,769 2,680 569 
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5  Conclusions 

This paper proposed the analysis of the Sigmoid, Tangent Hyperbolic and Elliot functions in the binary PSO 

for reconfiguration of electrical power system. The feasibility of application of the Tangent Hyperbolic and Elliot 

functions to the binary PSO algorithm for reducing losses in the electrical system was observed. The optimization 

packages can offer the user option to choose among the Sigmoid, Hyperbolic Tangent and Elliot functions for 

system reconfiguration. The reason is that the characteristics of the electrical system can influence losses and each 

function can obtain a different scenario for optimizing the electrical system. 

It was observed that for the IEEE-30 bus system there was a reduction of losses of 6.47% with the application 

of the Sigmoid function and 6.38% for the Hyperbolic Tangent function. The reduction of losses was 3.81% with 

the Sigmoid Function and 4.64% for the Hyperbolic Tangent Function for the IEEE-118 bus system. And for the 

planned example case, the reduction of losses was 2.69% with the application of Sigmoid and Hyperbolic Tangent 

function. For this case, the Elliot function reduced losses by 2.62%. The Hyperbolic Tangent function showed 

results with less convergent combinations. 

For future work, study the impact of load variation throughout the day for different systems reconfigurations 

and evaluate the functions in the binary PSO considering the reconfiguration with distributed generation. 
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