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Abstract. In recent years, the penetration of Distributed Generation (DG) has rapidly increased worldwide, mainly
due to the liberalization of electricity markets, restrictions on system expansion and environmental concerns. Tech-
nological advances in small generators and energy storage devices have also accelerated the process. This paper
proposes a methodology based on Particle Swarm Optimization (PSO) and Sensitivity Analysis (SA), namely
(PSO-SA), to identify the optimal placement and sizing of DG in radial distribution system (RDs). For improved
efficiency, a limited set of candidate buses for placement is defined through SA on the Lagrange multipliers. A
comparison against a regular PSO and other similar approaches is made. Numerical results show the effectiveness
and robustness of the method in providing good solutions with reduced power losses, when compared to other
techniques.
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1 Introduction

In the last few years, the penetration of Distributed Generation (DG) has gain special attention, mainly due to
liberalization of markets, restrictions on system expansion and environmental concerns (Hung et al. [1]). Further-
more, the placement of DG in RDs can contribute to technical, economic, and environmental advantages El-Ela
et al. [2]. Optimal Placement and Sizing of Distributed Generation (OPDG) is considered a Mixed-integer Nonlin-
ear Programming (MINLP), involving continuous and discrete variables (Coelho et al. [3]). According to Hemdan
and Kurrat [4], the minimization of power losses is the main goal of the most published works.

Several approaches have been proposed to solve OPDG, using deterministic or approximate methods. In
Acharya et al. [5], an analytical method based on the exact loss formula is used. The objective function is designed
to reduce power losses, and sensitivity factors are applied to reduce the number of solutions in the search space.
In Kaur et al. [6], a Sitting Planning Model together with Sensitivity Analysis (SA) is used to reduce the search
space, and a procedure based on Integrated Sequential Quadratic Programming and a Branch and Bound algorithm
is employed to find the optimal capacities of DGs. On the other hand, the study conducted by Khalesi et al. [7]
uses Dynamic Programming and a multi-objective model in order to reduce power losses and reinforce the voltage
profile after DG placement. Time-varying loads are taken into consideration. The results show that DGs provide
technical and financial benefits if allocated in correct locations with adequate sizes.

According to Gil Mena and Martı́n Garcı́a [8], Computational Intelligence (CI) techniques are viable alterna-
tives for solving the OPDG. In Sultana et al. [9], a method based on Grey Wolf Optimizer (GWO) is used to place
DGs and minimize reactive power losses. In Ali et al. [10], the OPDG problem is solved using Aint Lion Opti-
mization Algorithm (ALOA), where candidate buses for DG placement are chosen using Loss Sensitivity Factors
(LSFs). Recently, Ullah et al. [11] propose a modified PSO strategy, named Phasor Particle Swarm Optimization
(PPSO), seeking to minimizing energy loss in RDs, considering different load levels.

In this context, we propose a methodology based on PSO and SA, namely Particle Swarm Optimization with
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Sensitivity Analysis (PSO-SA), to carry out the optimal placement and sizing of DG in RDs, where SA indicates the
most suitable buses for placement, and PSO optimizes the sizes and capacities. The objective of the combination of
the algorithms is not only to improve the performance of the regular PSO but also provide less disperse solutions
in the search space. The method is tested on a 70-bus system and its effectiveness is demonstrated through the
comparison against a regular PSO and other stochastic approaches.

2 Problem Formulation

The OPDG problem consists in determining the location and size of DGs in order to reduce network losses and
improve voltage profile, also satisfying technical and operational constraints. In this work, the objective function
is designed to minimize the total active power losses, as in eq. (1):

min

NL∑
l=1

Plosses,l (1)

where Plosses,l=gkm(V 2
k +V

2
m−2VkVm cos θkm) are the active power losses in branch l. The voltage magnitudes

in buses k andm are given by Vk and Vm; gkm is the conductance between buses k andm; θkm is the corresponding
angular difference; and NL is the number of lines of the system.

The objective function eq. (1) is subject to the constraints given as follows:

Load flow constraints

Equations (2) and (3) represent the active and reactive power balance, respectively.

PDGk
− Plk = Vk

∑
m∈K

Vm(Gkm cos θkm +Bkm sin θkm) (2)

QDGk
−Qlk = Vk

∑
m∈K

Vm(Gkm sin θkm −Bkm cos θkm) (3)

where PDGk
and QDGk

are, respectively, the active and reactive power generated at bus k; Plk and Qlk are the
active and reactive power load in the same bus; and Gkm and Bkm represent the real and imaginary parts of the
k-m element of the network admittance matrix (Y = Gkm + jBkm).

Bus voltage constraints

Inequality (4) represents the minimum and maximum limits imposed on voltage Vk.

V mink ≤ Vk ≤ V maxk (4)

DG constraints

Inequalities (5) and (6) express the minimum and maximum limits of the active and reactive power injected
at location k by DGs.

PminDG ≤ PDGk
≤ PmaxDG (5)

PminDG ≤ QDGk
≤ PmaxDG (6)
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3 Solution Approach

3.1 Parcticle Swarm Optimization

Originally designed by Kennedy and Eberhart [12], PSO is an evolutionary algorithm that intents to mimic the
behavior of bird flocking, fish schooling or other swarming phenomena. Each particle Xi = (Xi1, Xi2, · · · , Xin)
in PSO is a candidate solution evolving in the search space with velocity (or rate of change) Vi = (Vi1, Vi2, · · ·Vin).
During the iterative process, the position and velocity of a particle i are given by (7) and (8), respectively:

V t+1
i = wV ti +rand1C1(Pi −Xt

i ) + rand2C2(Pg −Xt
i ) (7)

Xt+1
i = Xt

i + V t+1
i (8)

where Pi = (Pi1, Pi2, · · · , Pin) is the best position of particle i as of the current iteration, and the current best
solution of the swarm is denoted by Pg = (Pg1, Pg2, · · · , Pgn). The term w is the inertia weight, which is
assigned to the particle’s previous velocity (V ti ); rand1 and rand2 are two random vectors in the range [0;1]; C1

is the constant acceleration of cognitive learning and C2 is the constant acceleration of the social learning.

3.2 Sensitivity Analysis

Sensitivity Analysis is used in this work to generate a ranking of buses for DG placement in order to limit the
search space. The process is based on the Lagrange multipliers, which can be used to estimate modifications in a
given objective function when there is a change in the problem constraint. For example, consider problem (9):

min L(x) (9)
s.a gi(x) = bi i = 1, · · · ,m (10)

where gi can be interpreted as a constraint on the available resources modeled in equation i. In this work, we
propose to analyze the behavior of the optimal value of the objective function L for a variation in gi. Let us assume
that the optimal value x∗ is a function of the resources, g. According to Helmult [13], the Lagrange multipliers are
given by (11):

∂L(x∗(g))

∂(gi)
= λi (11)

where λi is the multiplier associated with the equality constraint i. In other words, λi is the marginal change of the
objective function after a small variation in gi, representing the increase (or decrease) in the objective function by
an unit increase (or decrease) of resources.

In RDs, where the minimization of active losses is usually the main goal, the Lagrange multipliers can provide
the changes in the objective function when an unit-change of active power occurs in the power balance constraint.
Due to the non-linear characteristic of the problem, the greater the disturbance, the greater the error in the estimates.
In this work we are interested in listing buses that can contribute to the minimization of power losses by increasing
the generated active power. Thus, the Lagrange multipliers associated with active-power balance constraints are
used to rank candidate buses for DG placement and reduce the search space.

3.3 PSO-SA Algorithm

The flowchart of the proposed algorithm is presented in Fig. 1. The inputs are the network data, the number
of DGs (NDG) and the configuration parameters of PSO (p, population size and maximum iteration, C1 and C2,
w, and Vi). An initial topology preprocessing is recommended to improve the Load flow (LF) efficiency. After
the limited set of candidate buses is chosen using SA, PSO optimizes the solution vector (X), composed by the
location and sizes of the DGs. The process ends when a maximum number of iterations is reached.
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Start

Input and Preprocessing
- Number and capacity of the DGs.
- PSO data: population size, max-
imum iteration, C1 and C2, w, Vi

-Perform topology preprocessing for LF

Sensitivity Analysis
- Perform SA using the Lagrange multipliers λi

Initialization
-Randomly initialize soluction vector X

Particle update
- Compute velocity (7) and update particles (8)

Best update
- Update the best current par-
ticles Pi and global best Pg

it < itmax ?

Retrieve the best
solution Pg .

No

Yes

Figure 1. Flowchart of the proposed approach.

4 Test results and discussion

The proposed method was implemented in Matlab R© and tested on a 70-bus distribution system [14] with
seven laterals. Its effectiveness in allocating DGs to minimize total losses is compared against a regular PSO
(without SA) and other OPDG techniques. The parameters were obtained after a series of performance tests with
different variations and the best result are obtained with: number of particles = 70; maximum number of iterations
= 200; C1 = 1.8; C2 = 1.2; wmax = 0.9; wmin = 0.4; Vmax = 7; and Vmin = -7. In Fig. 2 presents the analysis the
proposed method for a larger set of instances with different characteristics. In all tests, the placement of 3 DGs is
considered, as in [15]. The Back Foward Sweep (BFS) method [16] is used to obtain the LF solutions. For each
algorithm, the best solution over 100 runs is considered.

The Lagrange multipliers obtained by performing SA on the 70-bus system are listed in Table 1. The per-
centage values with respect to the bus with the highest sensitivity (bus 66) are also shown. In order to illustrate the
benefits of removing nonsignificant buses from the OPDG problem, let us assume that, in a system with Nb buses,
nλ buses are excluded. The number of possible solutions for placement can be evaluated by:

ns =
(Nb − nλ)!

(Nb − nλ −NDG)!NDG!
(12)

In the tests with PSO-AS, we consider that the nodes with percentage sensitivities less than 1% are ignored,
which results, for the 70-bus case, in the elimination of 26 buses. The total number of solutions for this system,
according to (12), is 52,394, considering NDG=3 and Nb= 69 (ignoring the substation). For nλ = 26, the
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Table 1. Lagrange multipliers of the active-power balance constraint (70-bus network)

Bus λi % Bus λi % Bus λi % Bus λi %

66 -0.1701 100 19 -0.0721 42.38 13 -0.0311 18.31 33 -0.0005 0.3

65 -0.169 99.33 57 -0.0628 36.95 16 -0.0311 18.31 40 -0.0004 0.25

64 -0.1652 97.12 56 -0.0551 32.4 7 -0.0157 9.24 41 -0.0004 0.25

63 -0.1644 96.67 69 -0.0539 31.73 12 -0.0157 9.24 39 -0.0003 0.22

62 -0.1639 96.34 70 -0.0539 31.73 51 -0.0043 2.53 31 -0.0003 0.18

61 -0.1494 87.86 67 -0.0477 28.08 50 -0.0039 2.3 32 -0.0003 0.18

60 -0.1388 81.59 68 -0.0477 28.08 46 -0.0016 1 38 -0.0001 0.12

59 -0.1299 76.38 55 -0.0472 27.78 47 -0.0016 1 48 -0.0001 0.12

58 -0.1073 63.11 54 -0.0416 24.46 36 -0.0015 0.93 5 -0.0001 0.08

28 -0.0753 44.27 10 -0.0367 21.63 43 -0.0015 0.9 30 -0.0001 0.07

27 -0.0752 44.25 15 -0.0367 21.63 44 -0.0015 0.9 3 -0.00005 0.03

26 -0.0751 44.17 18 -0.0367 21.63 45 -0.0015 0.9 4 -0.00005 0.03

25 -0.0748 43.99 52 -0.0349 20.53 35 -0.0014 0.87 29 -0.00005 0.03

24 -0.0745 43.82 53 -0.0349 20.53 42 -0.0012 0.71 2 -0.00002 0.02

22 -0.0744 43.73 9 -0.0348 20.5 6 -0.0011 0.66 1 -0.00001 0.01

23 -0.0744 43.73 14 -0.0348 20.5 11 -0.0011 0.66 37 -0.00006 0.04

21 -0.0735 43.21 17 -0.0348 20.5 49 -0.001 0.63

20 -0.0729 42.89 8 -0.0311 18.31 34 -0.0009 0.55

possible solutions reduce to 12,341. Therefore, a reduction of 76,4% in the search space is achieved by eliminating
buses with small contributions to the objective function.

Table 2 shows the results obtained by PSO-AS, as well by a regular PSO, the Modified Teaching-Learning
Based Optimization Algorithm (MTLBO) [8], the Grey Wolf Optimizer (GWO) [9] and the Water Cycle Algorithm
(WCA) [2]. The optimal DG sizes and buses determined by PSO-SA are 526 kW, 380 kW and 1.718 kW at buses
12, 19 and 62 respectively. It can be noticed that the total active power losses found by PSO-AS (2.624 kW) are
lower than the other methods.

Figure 3 presents a statistical analysis of PSO and PSO-SA, where the central mark denotes the median
over 100 simulations, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
Outliers are indicated by the ’+’ symbol. The results indicate PSO-SA achieves better solutions more frequently
than PSO, which is one of its main advantages. This behavior is mainly due to the application of SA to elect buses
for placing DGs, which improves the search efficiency.

Finally, Figure 4 shows the voltage profile of the system before and after DG placement. The voltage levels
are slightly improved, with the voltage magnitude at bus (66) increasing from 0.90 (p.u.) to 0.97 (p.u.).

Table 2. Simulation result for the 70-bus system

Base-case
Distributed Generation

GWO [9] MTLBO [8] WCA [2] PSO PSO-SA

Losses (kW) 225.01 74.9 69.5 71.5 69.4 69.4
Loss reduction % 66.7 69.1 68.2 69.1 69.1

DGs Location/kW
17 (700) 11 (493) 23 (438) 12 (526) 12 (526)

61 (2.000) 18 (378) 61 (775) 19 (380) 19 (380)
61 (1.672) 62 (1.105) 62 (1.718) 62 (1.718)

Total active generation (kW) 2.700 2.543 2.318 2.624 2.624

Voltage at substation (p.u.) 1.0 1.0 1.0 1.0 1.0 1.0
Voltage at bus 66 (p.u.) 0.90 0.98 0.98 0.98 0.97 0.97
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Figure 2. Boxplot of 100 simulations, 70-bus system (a larger set of instances with different characteristics of
PSO-SA).
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Figure 3. Boxplot of 100 simulations, 70-bus system (the central mark indicates the median, and the ’+’ symbol
denotes the outliers).
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Figure 4. Voltage profile in the 70-bus system before and after DG placement.

5 Conclusions

In this work, the PSO-SA method for the solution of the OPDG problem is presented. The SA is applied in
the first phase in order to find the candidate buses for DGs placement, and the PSO is then employed to determine
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the best DGs sizes. The method has been tested on a 70-bus distribution system, showing excellent performance in
solving the OPDG when compared to other meta-heuristics. The optimal performance of the algorithm is mainly
due to the application of SA to elected the buses to place DG, which enhance the robustness of the PSO algorithm
this is being the main contribution of the proposed work. Finally, the method can be applied to other MINLP
problems.
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