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Abstract. Image restoration, an important application of inverse problem techniques, is relevant for remote
sensing, surveillance and security, medicine, material science, research on biology, entertainment industry, and
more recently for aerial drone autonomous navigation. Our focus is on astronomical images. Indeed, observa-
tional astronomy is fully dependent on image interpretation. Therefore, image restoration techniques applied to
astronomy is a relevant research topic in this field. Here, Several wavelet schemes are applied for astronomical
images restoration, ranging from the orthogonal wavelets, including Haar, Daubechies, and Symlet families, to
biorthogonal wavelets. Different thresholding schemes are assumed to analyze the resulting wavelet decomposi-
tion, assuming as input data RGB images with high noise levels. The results are evaluated by using structural
image similarity as the comparative metric for different schemes to image restoration.
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1 Introduction

The process of image reconstruction, restoration, or mitigation of degradation effects has motivated a great
amount of research with many applications in science and technology: material science, medical tomography,
biology, remote sensing, geophysics, autonomous navigation, and robotics are some examples. This type of signal
analysis can also be treated as an inverse problem, belonging to the class of ill-posed ones.

A set of factors implies in the image degradation process, such as the distortion by the optical system, motion
blur, light absorption during photon traveling, to mention a few. There is a large literature on this subject–see
Gonzalez and Woods (1992) [1] and Beterro and Boccacci’s (1998) [2] books, in which several methods for image
restoration are described. In a previous contribution [3], we investigated four different techniques: truncated sin-
gular value decomposition, Tikhonov regularization, neural network restoration, and wavelet filtering. Previously
the main goal in [3] was to present the application of four modern approaches for image restoration. Here, the
focus is to do a better exploration on the wavelet based schemes.

By astronomical images, we refer to visual signals captured by space telescopes. These signals may rep-
resent galaxies, planets and other celestial bodies. This type of image is characterized by high resolution and a
considerable amount of dark pixels. They may or may not contain a high variance of pixels. Images of galax-
ies, for example, may have more variance of brightness, while images of planets are usually more dull. Thus,
computational performance is one key factor in order to efficiently analyze them.

In the last 20 years, wavelet transforms have been considered as an efficient methodology in signal and
image analysis, specially for filtering and denoising tasks [4]. In this sense, reconstruction schemes based on
wavelet transforms can be considered as an competitive alternative for treating astronomical images. In the cur-
rent work, we investigate the impact of the chosen wavelet family in the analysis, considering orthonormal basis
(Haar, Daubechies and Symlets) and biorthogonal (Biorn,n) as well. Besides the transform basis, the choice of
the thresholding strategy, which is the main part of the analysis, is also explored. The classical Soft thresholding
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and Hard thresholding schemes [5] are combined with techniques for estimating the threshold value (VisuShrink,
BayesShrink). And the cycle spin approach, proposed by Coifman and Donoho [6], is incorporated to diminish
distortions caused on the boundaries of the image due to the Gibbs phenomena.

In order to organize the presentation of our contribution, the topics are distributed as follows. In Section 2,
relevant topics from the considered wavelet families are briefly summarized. The soft and hard threshold functions
are also formulated in Subsection 2.1, as well as the estimation of the threshold value and the contribution of the
cycle spin procedure. In Section 3, some characteristics about the astronomical images are mentioned and the
proposed denoising methodology is also presented. Finally in Section 4, the designed numerical simulations are
discussed and the results are presented.

2 Wavelet Filtering

The fast discrete wavelet transform, proposed by Mallat [7], is an implementation based on discrete convo-
lutions involving the input signal x[N ] (with N = 2jmax elements) and filters h[k] and g[k]. These filters are
uniquely associated to the wavelet family, preserving the relationship of scaling and wavelet functions and their
translations in each scale or resolution level. Their size k is associated with the smoothness of the wavelet family.

The scaling coefficients, denoted by C, are obtained from the convolution of x[N ] with h[k]. The wavelet
coefficients, denoted by D in the one dimensional case, result from the convolution of the signal with g[k]. The
decimated form of the 1D wavelet transform (DWT) is given by the Cascade algorithm [7]. The input signal
x[N ] is decomposed into J resolution levels (J ≤ jmax). The 1D wavelet decomposition v of x[N ] is given by
v = DWTJ(x) = [C0, D0, D1, ..., DJ−1], in which the vector C0 contains the scaling coefficients in the lowest
level of the transformation (j = 0). The vectors D0, D1, ..., DJ−1 contain the wavelet coefficients in each one of
the factorization levels, from the first J − 1, to the the last and lowest one, indexed by 0.

In the case of the bi-dimensional wavelet transform [7], one standard formulation is the application of the
one-dimensional transform by lines and then applied by all columns of the analyzed image (2D data). The main
difference now is that after one decomposition level, three blocks of different wavelet coefficients (HL,LH,HH)
and only one block with scaling coefficients (C) are generated in the 2D transform. All these blocks have one
quarter of the size of the original matrix x. w = TWD1(x) = [C,HL,LH,HH]. In order to continue the
decomposition process, only the scaling coefficient block is further decomposed. The resulting decomposition is a
matrix of coefficients defined by blocks w = TWDJ(x) = [C0, HL0, LH0, HH0, ...,HLJ−1, LHJ−1, HHJ−1].

Daubechies wavelet

In the case of the orthonormal family of Daubechies wavelet (Db) [8], the filters h[k] and g[k] are also FIR
filters and respect the orthogonality of the wavelet basis. In fact, all the properties from the wavelet basis are kept
by them, such as compact support and smoothness. The orthonormal family of Daubechies is also characterized by
having the maximal number of n vanishing moments for some given support, which also defines the size of h[k]
and g[k] as being k = 2n. This property is related to the capability of the basis to represent exactly polynomials of
degree up to (n − 1) as a linear combination of only the scaling functions at any scale of the transformation. The
Daubechies wavelet function is generated by the scaling function, preserving orthogonality among scales.

The Haar wavelet is a particular case in the Daubechies wavelet (Db1) family. This mathematical technique
to represent a function expanded by an orthonormal basis was also introduced by Alfréd Haar at 1909. The Haar’s
expansion is cited as the first wavelet basis.

Symlet

Daubechies proposed a modification of the orthonormal wavelet family to increase symmetry, by obtaining
functions named Symlet. While the name of this family recalls symmetry, this family is only near symmetric. It
still maintains the same properties of the Daubechies family, such as compact support and filters with finite size,
associated to the vanishing moment property.

Symlets have been employed successfully in signal analysis [9] and are well suited to denoising problems
because of their near symmetry [10]. The symmetry property is desirable in denoising applications to preserve
phase data [Kovesi].

Biorthogonal wavelet

Another wavelet family, also devised by Daubechies, is the Biorthogonal family. In this wavelet system the
decomposition function and the reconstruction function can be different. This implies in the existence of a dual
scaling function and a dual wavelet that are combined with the original ones. In this sense, besides the filters
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h[k] and g[k], now there also exist h′[k] and g′[k] associated to the dual pair. And the filters considered for the
decomposition are therefore distinct from those assumed for the reconstruction.

The Biorthogonal family contains strictly symmetric wavelets at the expense of orthogonality. In other words,
it is not possible to have symmetry and orthogonality simultaneously. Therefore, since by construction the basis
of the Daubechies and Symlet families are orthogonal, these families cannot be strictly symmetric. In this work,
Biorthogonal wavelets are considered in a similar denoising scheme as proposed in [12].

2.1 Wavelet Shrinkage

The two-dimensional wavelet decomposition in J levels of the image x ,

w = TWDJ(x) = [C0, HL0, LH0, HH0, ...,HLJ−1, LHJ−1, HHJ−1],

contains one block of scaling coefficients that represent the main coarse data information. All variations, high
frequency associated events, details related to borders and contour and so forth are captured by three blocks of the
wavelet coefficients, HLj , LHj , HHj , generated at each level j = 0, ..., J − 1.

With the help of the seminal work of Donoho and Johnstone [5], the behavior of the wavelet coefficients when
affected by noise was systematically investigated. Since then, analyzing tools have been proposed in order to sep-
arate relevant information from those associated to spurious perturbations which are also captured by the wavelet
coefficients. The two most well established threshold functions were also proposed in [5]: the soft thresolding and
hard thresholding.

Hard thresholding (Equation 1) is the most intuitive threshold function in the sense of providing an heuristic
to discard unnecessary information. Every wavelet coefficient Di,j (assuming values from any of the blocks
HLj , LHj , HHj) that is below the threshold value λ will be truncated, while any other value will be preserved.

thrSλ (Dj,k) =

 0 , if |Dj,k| ≤ λ

|Di,j | , if |Di,j | > λ.
(1)

Soft thresholding (Equation 2) is similar to hard thresholding, but it assumes the subtraction of λ from the wavelet
coefficients above λ. This “shrinks” the signal representation, implying in a more blurred reconstructed image.

thrSλ (Dj,k) =

 0 , if |Dj,k| ≤ λ

sign(Dj,k)(|Dj,k − λ|) , if |Di,j | > λ.
(2)

The choice of the threshold value, λ, determines the quality of the denoising or compression procedure. Two
λ estimators considered in this work are the VisuShrink [5] and BayesShrink [13] schemes.

The VisuShrink approach uses a universal threshold, which is measured by Equation 3. It is proportional
to the size of the image n = (M × N) and the standard deviation σ of the noise, estimated by the wavelet
decomposition.

λvs = σ
√
2 ∗ log n. (3)

The universal threshold is generally a poor choice because it is often too large and removes too much of
relevant signal information related to the contours of the image. This results in oversmoothing the image. One
way to control this issue is to tweak the standard deviation, such as using a fraction of it. Another way is to
use adaptive threshold estimators, which uses local information from each sub-band Y = (HLj , LHj , HHj) to
estimate a locally adapted λ for each sub-band (λY ). One example of an adaptive threshold estimator method is
the BayesShrink estimator (Equation 4), which will be used in this work. Here n = (Mj ×Nj) is the size of the
sub-band Y on level j.

λY =
σ2

σX
, σX =

√
max(σ2

Y − σ2, 0), σ2
Y =

1

n2

n∑
i,j=1

Y 2
ij . (4)

The estimation of the standard deviation σ is another issue, since it is an unknown information in a real
scenario. It can be computed assuming the wavelet coefficients from all wavelet blocks, as proposed initially
in [5]. Equation 5 was also proposed in [5] as a way to estimate σ for one-dimensional data, assuming D0 the
wavelet coefficients from the coarsest block of the decomposition. This technique can also be used for 2D data, by
replacing D0 with the wavelet coefficients for each sub-band Y = (HLj , LHj , HHj) at different levels, as well.
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σ ≈ Median(|D0|)
0.675

. (5)

Therefore, the wavelet denoising approach can be summarize with the following steps:
1. Decomposition the image x in j levels: w = TWDJ(x),
2. Choose the threshold function and the threshold value,
3. Thresholding the wavelet coefficient blocks, obtaining ˆHL0, ˆLH0, ˆHH0, ..., ˆHLJ−1, ˆLHJ−1, ˆHHJ−1,
4. Apply the Inverse wavelet transform (IWT) to the thresholded wavelet blocks together with the scaling

coefficients C0. The resulted x̃ = IWT [C0, ˆHL0, ˆLH0, ..., ˆLHJ−1, ˆHHJ−1] is the restored image.

Cycle spin

The decimated formulation of the discrete wavelet transform which is implemented through the Cascade
algorithm is not translation invariant. This formulation may introduce artifacts in the image’s border specially
because of the assumption of periodic boundary extension while doing the filter convolution with values on the
image boundaries. This is known as the Gibbs Phenomenom. One way to solve this problem is considering the
cycle spin [6] procedure, given as:

1. Shift rows and columns by s places (pixel positions).
2. Denoise the shifted image
3. Unshift the image, take the average between this denoised signal and the original denoised signal.

3 Wavelet Denoising

The considered digital image is represented as a matrix L, whose discrete coordinates (x, y) are the row and
column entries of L. These coordinates are the pixels’ addresses. The matrix values L(x, y) are the gray levels
(from white to black) per pixel (per position) [1]. A color image is a composition of three images, one in red, one
in green and the other in blue (RGB) color, each one having its corresponding intensity levels for each pixel.

Data Preprocessing

The color images are converted to YCbCr color channel, as similarly done in [12]. The main advantage of
using color channels based on luminance is the gain in performance, since only the luminance channel (Y) has to
be denoised. We also note that different color channels may give better results, as pointed out in [14].

Noisy data

When noise is present in the image, we are dealing with a degraded image. The most common kind of
degradation associated with image acquisition tools is Gaussian noise, which is the type of noise we will consider in
this work. To validate the proposed denoising schemes, we will artificially degrade clean astronomical images with
Gaussian noise. The chosen noise type was an additive Gaussian noise with 10% of variance. The performance
of the denoising procedure is presented in Section 4, assuming various wavelet families and different threshold
functions

Metrics

In agreement with the specialized community, the chosen metrics to analyze the performance of the denoising
procedure are the Normalized Root Mean Square (NRMSE), the Peak Signal to Noise Ratio (PSNR) , and the
Structural Similarity Index Measure (SSIM). Assuming I the reference image and Ĩ being the reconstructed one
and E as being the expectation, computed in the discrete form, the metrics are given by:

MSE = E{(I − Ĩ)2} , NRMSE =

√
MSE

MAX(I)
, PSNR = 10 log

MAX(I)2

MSE
. (6)

DWT

For the wavelet transform, which is the first step of the denoising procedure, we assumed three different
wavelet families: Daubechies, Symlet and Biorthogonal. More precisely, we chose Haar (db1) and Daubechies
with 10 vanishing moments (db10) as representatives from the Daubechies wavelets. The Biorthogonal 6.8 and
Symlet 4, which has basis functions which closely match Biorthogonal’s 3.3. The Haar wavelet is the most popular
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choice for denoising, due to its simplicity and efficiency. And Biorthogonal 6.8 is similar to db10 in shape and
filter’s size. Given the multiresolution property of the wavelet transform, a parameter that has to be determined is
the number of decomposition levels of the transformation. We chose it according to Equation 7 [14]:

0 ≤ j ≤ log2M + log2N

4
− 1, (7)

being M and N the height and width of the image, respectively. Therefore, the assumed value is j = 3. The
algorithms considered in the simulations are provided by the scikit-image [15] project, version 0.16.2.

Cycle spin

We applied a value of 5 different shifts, starting from s = 1 to s = 5. Because the Gibbs Phenomenom is
strong closer to the image’s border, it is enough to apply only a small number of shifts to bring the pixels at the
border closer to the center. Larger number of shifts will add computational overhead while the benefits will not be
as noticeable as we wanted. This is because the Gibbs Phenomenom is weaker the farther we are from the border.
For this reason, we choose the range from 1 to 5 displacements (s).

4 Results and Discussions

Our test images were chosen from HubbleSite, cropped and rescaled to size 512 × 512. The experiments
were performed by several astronomical images: galaxy, planets (Saturn and Jupiter), and solar loop. For the sake
of space, only the galaxy restoration is shown in this paper. The image is from the NGC 3147 galaxy, and it can be
seen in Figure 1(a). It contains a significant amount of variance around the disk, with speckles representing stars.
Its degraded counterpart, with a Gaussian noise of zero mean and σ2 = 0.1, can be seen in Figure 1(b).

We found the best overall results by the combination of BayesShrink and soft thresholding for the NGC 3147
image, and VisuShrink and hard thresholding for the Jupiter image. Figure 2 displays the resulting denoised images
for all the four aforementioned wavelets. Note that the Haar wavelet is able to recover the dark surroundings more
faithfully to the original image. This is because the Haar wavelet is naturally designed to capture sharp variations,
since the wavelet function itself presents a jump. All the transforms were able to recover much of the star speckles.

Table 1. Wavelet filtering results. A=NRMSE, B=PSNR, C=SSIM. 1=NGC 3147, 2=Jupiter.

W db10 sym4 Haar bior6.8

M A B C A B C A B C A B C

1 0.258 22.544 0.744 0.255 22.618 0.75 0.252 22.726 0.757 0.256 22.612 0.75

2 0.299 19.686 0.4 0.298 19.707 0.402 0.298 19.72 0.4 0.298 19.694 0.402

In Table 1 we summarized the obtained results for the wavelet denoising procedures, assuming cycle spin
with s = 5. The performance is presented in terms of the three metrics previously defined: A=NRMSE, B=PSNR,
and C=SSIM. The Haar wavelet had the best overall performance, while db10 had the worst. One possible reason
for the low performance of db10 might be the size its filters (size k = 20) and its lack of symmetry. The structural
similarity obtained in the Jupiter image was just over half than that obtained in the NGC 3147 image.

We also check the contribution for the cycle spin technique and color channel conversion in Table 2 for the
Haar wavelet. As seen, cycle spin with 5 shifts may increase 0.6dB in PSNR for the NGC 3147 image, and 0.3dB
for the Jupiter image, and around 0.5% similarity for both.

5 Conclusions

Wavelet techniques were applied for astronomical image reconstruction. The denoising procedures perfor-
mance were analyzed employing different wavelet basis considering the discrete wavelet transform. Orthonormal
wavelets were aaplied from the Daubechies family (Haar and db10), as well as Symlets and biorthogonal wavelets.
Two thresholding methods (soft threshold and hard threshold) have been combined with two threshold estimators:
one static (VisuShrink) and the other adaptive (BayesShrink) in order to discard spurious information from the im-
ages. The cycle spin strategy was also included in the denoising procedure to diminish the distortions caused by the
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(a) (b)

Figure 1. NGC 3147 image: (a) original, (b) noisy.

(a) (b)

(c) (d)

Figure 2. NGC 3147 restoration by Wavelet filtering: (a) Bior6.8, (b) Haar, (c) Sym4, (d) Db10.
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Table 2. Wavelet filtering results.

Procedure s=0 + YCbCr s=5 + RGB s=5 + YCbCr

Metric NRMSE PSNR SSIM NRMSE PSNR SSIM NRMSE PSNR SSIM

NGC 3147 0.271 22.111 0.69 0.256 22.581 0.742 0.252 22.726 0.757

Jupiter 0.308 19.433 0.354 0.298 19.712 0.399 0.298 19.72 0.4

Gibbs phenomena. The cycle spin has an effective contribution was highlighted by the presented performances.
Despite being the only discontinuous one from the orthonormal wavelets, the Haar wavelet is still a reasonable
and competitive choice for astronomical images. The Haar wavelet was able to efficiently treat the dark pixels,
which are prevalent in this type of image. Another observation is that the choice of wavelet family has not been as
impactful as the choice of threshold methods and associated values. The other technique explored was the color
channel conversion, which had a relevant contribution for increasing the quality of the denoising procedure.
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