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Abstract. A critical problem in the manufacture of steel by converting pig iron into a Linz-Donawitz (LD) con-
verter is the accumulation of skull, a mixture of slag and steel, in the body of the lance used for oxygen injection.
This accumulation of skull can cause serious problems, among them prevent the movement of the lance through
the flanges located in the converters. Currently, in the steel industry, monitoring is done manually, based on an
operator’s experience. Traditional computer vision methods are not effective due to the hostile environment of the
steelmaking process, due to its object detection algorithm. Problems such as light, smoke, and others, hamper the
task of image recognition. To overcome these deficiencies, this article proposes a method to monitor and mea-
sure, in real time, the thickness of the skull on the lance using deep learning, more specifically a Mask R-CNN
framework. Our method consists of installing a high resolution camera to monitor the lance in real time, sending
images to a computer, equipped with a Mask R-CNN framework already trained to identify and measure the skull
deposited on the lance. The results of the experiments performed show the feasibility of using the system to assist
the operator in monitoring of lance skull.

Keywords: Linz-Donawitz converter, computer vision, convolutional neural networks, deep learning, Segmenta-
tion, Mask R-CNN.

1 Introduction

1.1 Steelmaking process in a Linz-Donawitz (LD) converter

Considered the fastest process in steelmaking, the LD process is the first part of the steelmaking process with
oxygen. The process was first patented at ”Linz” and ”Donawitzed” in Austria.

In the manufacture of steel by converting pig iron into an LD Converter, the upper blowing basic oxygen
oven (BOF) is equipped with a lance at the top of the converter. The lance injects oxygen into a surface of the
liquid metal charge, a contact region called the impact zone. According to Shi [1], the function of oxygen is
to oxidize elements such as carbon, manganese, silicon and phosphorus to refine the metallic charge and make
the chemical composition, weight and temperature of the steel adherents to previously defined bands. With the
oxidation reactions, which remove impuities, and the agitation of the converter’s load due to blowing, an emulsion
formed of CO and CO 2, metal droplets and slag (mixture of oxides constituted by the removal of impurities) is
formed. This emulsion can cover the oxygen injection lance with the formation of a skull. The figure 1 shows the
components of a steelmaking process in an LD converter.

1.2 Problems in the steelmaking process in an LD Converter

As reported by Filho and Barbosa [3], the slag oxidation product combines with the addition of CaO (calcium
oxide) in the bath and flows over the metal oxide, part of this slag adheres to the spear forming a smudge. The
formation of the smudge and its adhesion on the spear surface is inherent to the conditions of the process. The
accumulation of shell on the surface of the boom increases its diameter and weight. We can see in figure 2 the
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Figure 1. LD process components. (Adapted from [Sahu])

increase in the diameter of the lance with the grip of the skull.

Figure 2. Night image of a lance covered with skull.

It is important to highlight that the flat boom measures 40 cm and the duct through which the boom passes
80 cm. For this reason, the increase in the casing on the lance becomes a critical problem, as it makes it difficult
to move the lance in the operations of introducing and removing the interior of the converters as they pass through
the duct, known as the ”lance shirt”, depending on the amount of skull deposited on the lance, it can stick to the
passage duct causing serious problems. The figure 3 shows the moment when the lance grasps the passage duct
due to the skull deposited on its surface.

Figure 3. Image of a lance covered with skull clinging to the passage duct.

According to Filho and Barbosa [3], currently, in the steel industry, the monitoring of excess skull deposited
on the lance is done by an operator who analyzes the images on a monitor. This operator is given an enormous
responsibility to decide the right moment to stop the process for removal of the lance skull. A wrong decision
can lead to serious problems such as loss of productivity, increased costs and operational insecurity. It can even
damage the lance structure if the operator does not make the decision at the right time.

2 Related works

To improve the efficiency of measurement Ayres et al. [4] proposed a method to measure of the skulll de-
posited on the lance using traditional computer vision. Your article cites three events inherent to the rustic envi-
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ronment of the process that made measurement difficult. Sparks of light falling near the lance are momentarily
detected as edges, which generally results in measurements of thickness greater than the actual one. Another
complicating factor is the low luminosity of the measurement region that induces the system to measure more or
less than the actual measurements. Finally, the smoke that crosses the region where the measurement is made,
obfuscating the edges of the lance, generating noisy attenuations for larger and smaller diameters of the real.

According to Ayres et al. [4], some events inherent to the rustic environment of the process made measurement
difficult. Sparks of light falling near the boom are momentarily detected as edges, which generally results in
measurements of thickness greater than the actual one. Another complicating factor is the low luminosity of the
measurement region, which induces the system to measure more or less than the actual measurements. Finally, the
smoke that crosses the region where the measurement is made, obfuscating the edges of the spear, generating noisy
attenuations for larger and smaller diameters of the real.

Wu et al. [5] proposed a new image segmentation algorithm, with which the iron pellets superimposed on
the image can be well separated and thus the size distribution of green iron pellets (PSD) can be measured online
with good accuracy. The proposed algorithm first identifies the markers of each pellet directly from the gray scale
image by a method of double morphological reconstruction; then, a circle scanning method is proposed to divide
the overlapping pellets and measure the diameter of each segmented pellet. His method obtained an accuracy of
94.3, compared to the results of manual sieving.

This article proposes a method to monitor and measure, in real time, the thickness of the shell on the lance
using deep learning, more specifically convolutional neural networks (CNN). This is divided as follows: in section
3 the theoretical foundation is presented where the major pillars of knowledge were addressed and defined. In
section 4 the developed system is presented. Section 5 presents the analysis of the data and results of the project’s
implementation.

3 Theoretical foundation

This section briefly describes the Mask R-CNN presented by He et al. [6], framework used in the implemen-
tation of the system proposed in this article.

3.1 Mask R-CNN

Before describing the Mask R-CNN it is important to mention some frameworks that boosted advances in
object detection and semantic segmentation as Fast R-CNN presented by Girshick [7], Faster R-CNN presented by
Ren et al. [8] and Fully Convolutional Network presented by Long et al. [9]. They are intuitive, flexible and robust
frameworks, in addition to fast training and inference time.

One of the main stages of Mask R-CNN is semantic segmentation, which combines classic computer vision
tasks in object detection. Its objective is to classify individual objects and locate each one using a bounding
box and semantic segmentation, where the objective is to classify each pixel in a fixed set of categories without
differentiating object instances. This challenging task requires a complex method to obtain good results.

Mask R-CNN extends Fast R-CNN by adding a branch to predict segmentation masks in each region of
interest (RoI), parallel to the existing branch for classification and boundary box regression (figure 4). The mask
branch is a small FCN - Full Conection Network applied to each RoI, providing a segmentation mask pixel by pixel.
Mask R-CNN is simple to implement and train, given the structure of the Faster CNN framework, which facilitates
a wide variety of flexible architecture projects. In addition, the mask branch adds only a small computational
overhead, allowing for a quick system and quick experimentation.

Figure 4. The MASK R-CNN structure for instance segmentation.

As shown in table 1, the Mask R-CNN surpasses all previous results of a unique model of the art in the task
of instance segmentation in the competition using the COCO dataset, data set with the objective of advancing the
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state of the art in object recognition, presented by Lin et al. [10], including the highly designed entries from the
2016 competition winner. As a by-product, our method also excels in the COCO object detection task. In ablation
experiments, we evaluate several basic instantiations, which allows us to demonstrate their robustness and analyze
the effects of the main factors.

Table 1. Comparison of Mask R-CNN with the state of the art in instance segmentation.

backbone AP AP50 AP75 APs APm APl

MNC Dai et al. [11] ResNet-101-C4 24.6 44.3 24.8 4.7 25.9 43.6

FCIS Li et al. [12] + OHEM ResNet-101-C5-dilated 29.2 49.5 - 7.1 31.3 50.0

FCIS+++ Li et al. [12] + OHEM ResNet-101-C5-dilated 33.6 54.5 - - - -

Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1

Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4

Mask R-CNN ResNeXt-101-FPN 37.1 60.0 39.4 16.9 39.9 53.5

Mask R-CNN models can run on a GPU for about 200ms per quador, and training using the COCO dataset
takes one to two days on a machine with 8 GPUs. The fast training and testing speeds, together with the flexibility
and precision of the structure, will benefit and facilitate future research on instance segmentation.

The system proposed in this article, its application and the results obtained are described below.

4 System design and proposed algorithm

To capture the images, a camera was placed in a location at the same height as the upper section of the lance
passage duct, in order to collect images of the boom at the entrance and exit of the duct, as can be seen in figure
5 . For further analysis, videos were captured at a rate of 23 frames per second, with a resolution of (1920x1080)
pixels. After the images were collected, an algorithm was developed using Mask R-CNN, to segment and obtain
the measure of the spear thickness in centimeter.

Figure 5. Hardware components of the proposed system

To compose the training, validation and test bases, images of the captured videos were generated at a rate
of 23 frames per second. Each image, from the training and validation base, was demarcated in the region of the
spear determined for monitoring, for this purpose the VGG Image Annotator (VIA) was used, an image annotation
tool that can be used to define regions in an image and create textual descriptions of these regions.

In the formation of our system, we used as a base the Mask R-CNN network already trained with the Coco
dataset, combining the backbone Resnet-101, responsible for the most generic characteristics, training only the
head of the network, a Full Network Connection, part responsible for the most specific characteristics, method
known as transfer of learning.

CNN have some parameters whose values are defined before the learning process starts, they are called
hyperparameters. There are several hyperparameters in a CNN, table 2 show some hyperparameters and their
values that have been used.
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Table 2. Parameters used for network training

Parameters Valor Description

Number of epoch 10 Number of training epoch

Steps for epoch 100 Number of samples per epoch

Images of GPU 2 Number of images processed by GPU

Learning rate 0.001 Network learning rate

Minimum confidence 0.9 Ignore trust detection less than 0.9

The graph in figure 6 shows the loss curves (training and validation) by number of seasons during the training
stage. As detailed in the table above, 10 times were used for training.

Figure 6. Smoothed curves for training and validation

In the next section we will analyze the performance of the system in monitoring the lance through images
taken from the test base. In addition to generating a video with the performance of the system and publish in
youtube (Sahu [13]).

5 Results

The main objective of the system is not to allow the lance, which cleans to measure 40 cm, to be taken by the
casing to the point of grasping the boom passage duct, whose diameter measures 80 cm. To measure the diameter
of the lance in the images, the system uses the pixel x cm ratio. The system create of 3 strips according to the
criticality of the lance diameter measurement: green for diameter up to 50 cm, yellow with diameter between 51
and 60 cm and red above 60 cm. To analyze the results, some images and their respective measurements made
by the system are presented. The figure 7 shows a clean lance, measuring 40 cm, low criticality attributed by the
system.

Figure 7. Clean lance, without deposited shell, measured by the system

A complicating agent of image measurement reported by Ayres et al. [4] is low luminosity. This can induce
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the system to measure diameters smaller or larger than the real ones. However, the Figure 8(a) shows the original
image and the Figure 8(b) show the segmentation and correct measurement of the system in a night scene with low
luminosity, measuring 50.189 cm and assigning the average criticality, yellow color. Another complicating agent
for measurement mentioned is smoke, which, due to noisy attenuations, induces the system to measure larger and
smaller diameters of the real. The figure 9(a) shows the spear taken by smoking with difficult visibility. However,
the Figure 9(b) shows that neither smoke nor low visibility influenced the segmentation and measurement of the
system, attributing 42,532 cm, yellow, medium critically.

Finally, the figure 10(a) shows the lance taken by the incandescent shell, while the figure 10(b) shows the
segmentation of red color, as the diameter measurement reached 74,146, maximum criticality, reaching almost 80
cm, the passage duct measurement. In addition, in this situation the system emits an audible alert.

(a) Lance image in a low light setting. (b) Lance image in a low light setting measured by the system.

Figure 8. Lance image in a low light setting.

(a) Smoke-covered lance image. (b) Smoke-covered lance image measured by the system.

Figure 9. Smoke-covered lance image.

(a) Image of the lance covered by the smudge. (b) Image of the lance covered by the shell measured by the sys-
tem.

Figure 10. Image of the lance covered by the smudge.

To do the calculation of AP for object detection, we would first need to understand IoU - Intersection over
union. The IoU is given by the ratio of the area of intersection and area of union of the predicted bounding box and
ground truth bounding box, as shown 11(a) . To compute mAP (mean Average Precision), of the proposed method,
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a set of tests with 27 images was used. The mAp for the IoU was computed in a range of 0.5 to 0.95, with steps of
0.05. The figure 11(b) shows the graph showing the mAPs for each IoU. The average mAp, presented below, can
be calculated by adding the mAp of each IoU. mAP: IoU=0.50:0.95 = 0.5962962962962963

(a) Intersection over Union. (b) Graph showing the mAPs for each IoU.

Figure 11. IoU (Intersection over union) and Average Precision and mAP for Object Detection.

6 Conclusion

In this article a method is presented to monitor and measure, in real time, the thickness of the skull on the
lance using deep learning, more specifically Mask R-CNN framework. This method consists of building a system
that monitors the lance in real time through images, assisting the operator in deciding when to stop the lance for
maintenance. Another possibility is the integration of this system with another system to carry out automatic lance
maintenance. Unlike tools that use traditional visual computing, which has difficulties with external agents such as
low light and smoke, the tool presented showed quite satisfactory results in the measurement of the lance skull even
in scenarios with these external agents. The results of the experiments performed show the feasibility of using the
system to assist the operator in monitoring the skull on the lance. As future work from this, we can use YOLOv3,
presented by Redmon and Farhadi [14], a very promising framework for object detection.
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