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Abstract Image processing approach has been employed as an alternative to the global navigation satellite system
(GNSS) signal for the unmanned aerial vehicle (UAV) autonomous navigation. The UAV image is caught during
the fly. A supervised artificial neural network is configured to be an image edge extractor. Two images are
employed to the UAV positioning: a satellite georeferenced image, and image from the UAV. The image processing
procedure consists to extract edges from the images, and to apply a correlation operator on the two segmented
former images. The maximum correlation coordinate will be to indicate the UAV position. A low cost thermal
infrared camera of type FLIR (Forward Looking Infrared) Duo is coupled to two UAVs (DJI Phantom 3 Standard,
DJI Matrice 600 Pro) for two experiments, during daytime and nighttime. The algorithm is also implemented in
Raspberry Pi and its processing time was evaluated. The results have shown good results for the UAV autonomous
navigation using the low cost thermal infrared camera.
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1 Introduction

In several applications, the use of manned aircraft has been expensive, in terms of development costs, main-
tenance, and training of pilots [1]. In this sense, the use of Unmanned Aerial Vehicles (UAVs) has received
considerable attention in recent decades. Some characteristics motivate its use, mainly, low cost and ability to use
in environments that are difficult for man to access [2, 3].

A limitation for the insertion of UAVs in the airspace is related to the quality and reliability of the information
about its location [2]. In most systems, this information is provided by the Inertial Navigation System (INS), which
can present an accumulative error, especially low-cost INS [4]. These errors are generally corrected by the Global
Navigation Satellite System (GNSS), for example, the North American Global Positioning System (GPS) [5].

The accuracy of GNSS systems, however, can be compromised by several factors: number of visible satellites
and environmental-climatical conditions, for example; on equatorial/tropical zones, the scintillation due to iono-
spheric bubbles and the ion spring effect can cause interference on the GNSS signal, and interference by jamming,
adding noise to the signal, or spoofing, falsifying the signal [5–7].

The mitigation of GPS signal failures can be achieved by fusioning data from several sensors [1]. UAVs, how-
ever, have restrictions on payload, energy consumption, and processing time. Therefore, the number of embedded
sensors is limited. An alternative is to use image-based navigation. [1].

There are several approaches to visual navigation [8, 9], among them, template matching. which is a technique
that consists of matching the image captured by the UAV to a region of a georeferenced image, already stored in
the embedded system. For this, different techniques can be used, for example, the maximum correlation [7, 10].

Pattern matching can use information from the inertial system to reduce the search on the georeferenced
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image. In addition, information from embedded sensors such as a compass and altimeter can be used to assist in
correcting scale and rotation of images obtained in flight [11, 12].

Most studies focused on autonomous aerial navigation use imaging sensors in the visible spectrum, consid-
ering ambient conditions with good light [8]. However, there is a demand for low-light night navigation. In this
context, thermal infrared imaging is a viable complementary system for navigation at night [13, 14].

In this work, template matching techniques were employed. Thermal images obtained by a low-cost thermal
sensor embedded in UAVs were used. A georeferenced image in the visible spectrum was also considered as a
reference. The algorithm was implemented in a Raspberry Pi CPU hardware, in order to evaluate the capabilities
of real time processing, for application in autonomous navigation.

2 Methodology

2.1 Thermal infrared sensor

A sensor system is designed for converting and storing an image scenario into energy values [14]. A specific
type of sensor is formed by arrays of photodetectors or thermal detectors, they are called Focal Plane Array (FPA).
These matrix arrangements of photodetectors are able to convert the energy reaching into electrical signal values
for processing [15]. After this conversion process, the image is discretized into digital numbers.

The thermal sensor employed was a low-cost camera, imaging in visible and thermal bands. The specifica-
tions provided by the manufacturer were summarized in Table 1.

Table 1. Camera Technical Data

Thermal Imager Uncooled V Ox Microbolometer

Spectral Band 7.5− 13.5 µm

Sensor Resolution (pixels) 160× 120

Lens Options 57o × 44o

Thermal Frame Rates 7, 5 Hz (NTSC); 8, 3 Hz (PAL)

2.2 Automatic image registration

A technique for estimating UAV position by images is automatic registration Conte and Doherty [6], Braga
et al. [7], Goltz et al. [10], Braga [12], Silva [13], identifying the overlap of images captured in different moments,
points of view and also with different sensors [12].

In the image register, illustrated in Fig. 1, a correlation window goes from the top to the bottom calculating
the correlation between the image windows: the reference image and the image captured in flight. At the end, the
entire image is scrolled. The position estimation is given by the correlation maximum. [13].

Figure 1. Correlation window of the georeferenced image and the computation of its cross correlation with the
aerial image of the UAV. On the right, the final position estimate is represented by the central pixel of the window
that indicates the highest correlation. Fonte: Image adapted from Braga [12].

The cross correlation between the UAV image I, with M × N pixels, and the georeferenced image T, with P
× Q pixels, is given by [12]:
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1), (N − 1)]; and T̄ is the complex conjugate T .

The highest value in the cross-correlation matrix corresponds to the central pixel of the image captured in
flight, estimating the UAV position. Since the image of the overflown region is georeferenced,the geographical
coordinates of the point of greatest cross-correlation and location of the UAV are known. Thus, the position
estimation process by automatic image registration is completed [12].

In order to consider sensors in different regions of the electromagnetic spectrum, the images are processed,
which allows segmentation by edge detection. This allows you to correlate the border images [13].

2.3 Extraction of edges by artificial neural network

The automatic image registration allows match images from different sensors, with adequate accuracy in
position estimation, and low influence of variations of ambient lighting Silva [13]. In addition, working only with
the edges of the images can reduce the amount of data processed [12].

Conte and Doherty [6], Braga et al. [7], Goltz et al. [10], Braga [12], Silva et al. [16] successfully use Artificial
Neural Networks (ANNs) as filters for edge detection. According to Li et al. [17], when compared with traditional
edge extractors, ANNs provide greater accuracy.

The input vector for the ANN extracting edges can be a vector of nine elements, which corresponds to
the elements of a window (matrix) 3 × 3 pixels. This window for computing the image correlation, between a
reference (georeference image) and the image obtained by the UAV, scrolls through a binary image pixel to pixel.
In the process, the binarization threshold is determined by the Otsu method [12].

The Multilayer Perceptron Neural Network (MLP), trained to recognize edge and non-edge patterns, has
been published in previous papers Braga et al. [7] e Silva et al. [16]. MLP has shown to be efficient as an extractor
of binary edges. Its architecture has been determined as an optimization problem, solved by using the Multiple
Particle Collision Algorithm (MPCA) meta-heuristic for automatic network configuration [16]. The parameters
of training and neural network architecture: constant at the moment; learning rate; number of hidden layers; and
number of neurons in each hidden layer; obtained with the MPCA are presented in Table 2.

Table 2. Neural Network Architecture

Input Layer 9 Neurons

Hidden Layers 18 Neurons

Output Layer 2 Neurons

Activation Function Hyperbolic Tangent

Learning Rate 0.73

Momentun Rate 0.85

Maximum Number of Epochs 15000

Maximum Acceptable Error 10−8

2.4 Estimation of UAV position

The UAV position estimation process performs the treatment of georeferenced and thermal images, for ex-
tracting edges of images from different sensors (Figure 2). The processing of the georeferenced image in the visible
spectrum embraces of changing to gray levels; binarization, responsible for employing a value of threshold for an
image with values of zero and one; filtering, to remove discretizing noise; edge extraction by ANN; selection of
correlation, reducing the search region; and the cross correlation, to estimate position.

The processing of the aerial image in the thermal infrared spectrum involves scaling, in order to match the
scales to the thermal and georeferenced images; conversion to gray levels, binarization, filtering and extraction of
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Figure 2. Position estimation algorithm

edges by ANN as well as in the georeferenced image; rotation adjustment to leave both images pointing north; and
the cross-correlation with the visible image.

Silva [13] verified this position estimation algorithm for a FLIR thermal camera in the spectral range of 3.4 to
4.8 µm, resolution of pixels 640× 512, and generation rate frames of 25 Hz. In this work, the used FLIR camera
operates in a different spectral range (7.5 to 13.5 µm), lower resolution in pixels (160×120), and lower generation
rate frames (8.3 Hz). Silva [13] did not consider the implementation on embedded hardware.

2.5 Embedded system processing

As an embedded system, a Raspberry Pi 3, Model B, was considered. The compatibility with the library
Open Source Computer Vision (OpenCV) and its documentation motivated the choice.

The algorithm was implemented using the C + + language. The funcions grayscale conversion, filtering,
binarization, template matching, rotation and resizing were implemented using the OpenCV library.

3 Results

3.1 First Experiment

In the first experiment, images were collected during the day using the FLIR thermal camera integrated in the
UAV Phantom 3. The flight was programmed considering the cover, using the Mission Planner application. Flights
were performed in a parking at an average altitude of 100 m, at a time close to 7 : 30 a.m., with average speed of 3
m/s. For the flights, the data provided by the INS and the GPS, accessed via flight log were considered as correct
UAV positioning. A georeferenced image of the parking obtained by Google Earth Pro was considered.

A number of 120 thermal aerial images were considered as a database for the analysis, with location given
according to information from the GPS integrated to the Phantom 3. This location information was adopted as a
correct measure of the position of the UAV. The latitude, longitude, and altitude, as well as the yaw, pitch, and roll
angles adopted as the true position in the estimation algorithm were reported in the UAV flight log.

The performance metric used was the Error Good Matching (EGM), a position estimate with error, calculated
by Euclidean distance, less than five meters. The value of five meters is adopted, as it corresponds to half the
maximum error of the embedded GNSS systems [6].

The Gaussian filter and edge extraction by ANN were used in the automatic registration process Silva [13]
and Braga et al. [7]. The estimation error was obtained in relation to each of the 120 points of evaluation of the
trajectory, given according to Fig. 3.

In Fig. 3, the dashed red line indicates the reference equal to 5 meters for errors. Points below this red line are
considered EGM. 55 estimates were considered EGM. This corresponds to approximately 46 % of the analyzed
points of the trajectory.
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Figure 3. On the left, position estimation error obtained by the automatic image registration algorithm considering
the 120 evaluation points.On the right, number of position estimates in each error range, using the automatic image
registration algorithm configured with the RNA, Sobel and Canny extractors.

It should be noted that there were no position estimation errors above the maximum error of the GPS system
(10 m). The maximum error presented was 7.234 m, which has the same order of magnitude as the expected error
when using a global positioning system for navigation. This indicates that the estimation algorithm is a candidate
in air navigation by thermal camera. However, it is necessary to evaluate the processing time of this algorithm in
an embedded system.

In another evaluation, the Sobel and Canny edge detection performance were evaluated. Gaussian filtration
was applied to eliminate noise in Sobel extraction process. The Canny filter is already based on Gaussian filter.
In Fig. 3, the histogram of the distribution of errors for each edge detectors is also shown. For example, in ANN
detection, 32 position estimates resulted in errors between 4 and 5 meters.

By analyzing Fig. 3, the distribution of the estimation errors was close for the three extractors. Cconsidering
the Error Good Matching metric and the 120 position estimation points, obtained with automatic image registration,
adopting extractors ANN, Sobel and Canny, were obtained values of 55, 68, and 47 were verified by ANN, Sobel,
and Canny edge extractors, respectively.

3.2 Second experiment

In the second experiment, images obtained at night from the FLIR thermal camera on board the UAV Matrice
were considered. The reference positioning information was provided by a GPS Real Time Kinematic (GPS RTK).
This test aimed at evaluating the ability to execute night flights by computer vision. The UAV captured the images
at 80.5 m altitude, at a time close to 07:30 pm, with an average speed of the drone of 3 m/s.

208 thermal images were obtained, the locations were measured by a GPS RTK. The location in latitude,
longitude, and altitude, were provided by the RTK system. The bow direction and pitch, raw, and yaw angles were
provided by the INS.

The georeferenced image used in this experiment was obtained using Google Earth Pro. It is an image in
the visible spectrum captured during the day, with resolution of 0.2649 m/pixel, and 1920 × 1080 pixels of
dimension.

The estimation errors for the 208 evaluation points of the night trajectory, using the Gaussian filter, are
presented in Fig. 4. The dashed red line delimits the region of points classified as EGM (5 m).

208 thermal images were used to test the position estimation algorithm with MLP edge detection and Gaus-
sian filtering. 123 estimates were considered EGM, 59.13 % from trajectory points. Also in Fig. 4, no errors
exceeded the maximum GPS system error (10 m). The maximum error obtained was 7.539 m. Thus, considering
the experiments, the estimation algorithm could be applied for autonomous aerial navigation by thermal infrared
imaging. Therefore, it is necessary to evaluate the processing time of this algorithm in an embedded system.

In another analysis, the performance of the estimation algorithm, adopting Sobel and Canny, were evaluated.
In Fig. 4, there is a histogram of the distribution of errors for each of the edge detectors. The distribution of
estimation errors was similar for the three extractors.

The EGMs obtained using the ANN, Sobel, and Canny edge extractors were 123, 109, and 112, respectively.
Thus, the ANN edge detector performed better in position estimation, with 59.13 % of the assessment points.
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Figure 4. Position estimation error obtained by the automatic image registration algorithm at 208 points (left).
Position estimates in each error range, using the automatic image registration algorithm configured with RNA,
Sobel and Canny (right).

3.3 Embedded Processing

The average of CPU-time for the position estimation, executed on the Raspberry Pi 3, are presented in cref
TemposPi. These times correspond to the processing of a thermal image, with 160 × 120 pixels. In order to save
time and processing, the image of the edges of the georeferenced image is previously stored. In Table 3, average
processing time of the 208 thermal images captured at night are shown.

From Table 3, the greater computational effort was verified by computing the correlation. It is observed that
the processing time on the Raspberry Pi 3 has not been a limiting factor for computer vision navigation using edge
extraction by MLP neural network and automatic registration. A limitation would be the time interval between the
capture of two subsequent thermal images. Therefore, the process to estimate the UAV positioning takes less than
1 second.

Table 3. Average times of execution of the steps of scale correction, rotation adjustment, filtering, clipping and
correlation in Raspberry Pi 3.

Algorithm Step Execution Time (seconds)

Scale Correction 0.00128

Rotation Adjustment 0.00680

Filter Application 0.00179

Edge Extraction (LUT) 0.00857

Cropping the Georeferenced Image 0.00032

Correlation between Images 0.03976

Total time 0.06845

4 Final Remarks

The results of this study indicate that self-configuring by the MPCA for an ANN for edge detection is a com-
petitive technique, allowing to be used in autonomous night navigation by thermal imaging. The UAV position
was estimated in the same order of magnitude as the conventional GPS error. Therefore, the described method-
ology for autonomous navigation by thermal images can be applied as an alternative solution in case of failure or
unavailability of the GNSS signal.
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