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Abstract. A posteriori error estimation for multiscale hybrid-mixed formulations for Darcy’s problems is dis-
cussed. The method adopts two-scale finite element spaces: refined discretizations are adopted inside polygonal
subregions, but flux approximations are constrained over the mesh interfaces by a given coarse normal trace space.
For stability, pressure and flux approximations are divergence compatible. The error estimation is based on po-
tential reconstruction, which is a popular technique for this kind of analysis in the context of mixed methods.
Numerical experiments are presented in order to illustrate the efficiency of the proposals.
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1 Introduction

Flows in porous media appear in many engineering and environmental applications. The usual characteristics
of these applications are their intrinsic multiscale and high-contrast behavior due to heterogeneous coefficients.
Under such conditions, the accuracy of standard numerical methods may deteriorate. To improve the performance
of simulations, a multiscale treatment is required by some effective technique allowing the incorporation of small
scale effects on the larger ones. In this direction, the multiscale hybrid mixed finite element method [1] (denoted
by the acronym MHM-H(div) is considered in the current study.

Mixed finite element (FE) methods for Darcy’s flows are formulated for flux σ and pressure u simultaneously.
Flux approximations must have continuous normal traces along inter-element boundaries (i.e. flux FE spaces are
H(div)-conforming), but the pressure variable is searched in discontinuous spaces. For stability (inf-sup condition)
flux and pressure FE pairs should be divergence-compatible. Local mass conservation occurs and divergence-free
constrain can be strongly enforced.

The MHM-H(div) scheme is designed to cope with complex domain geometry and the inherent multiscale
nature of the phenomena. It is equivalent to a local-global characterization of a mixed formulation based on a two-
scale FE space setting, denoted by MFEM-(γ), where γ represents mesh widths and polynomial degrees of the
two-scale levels. The discretizations are based on a general domain partition formed by polyhedral subregions (not
necessarily conformal), where a hierarchy of meshes and approximation spaces are considered. The normal traces
of the flux over the mesh skeleton (facets of subregion boundaries) are constrained to a given finite-dimensional
(coarser) trace space. The FE approximations inside the subdomains may be enriched in different extents: concern-
ing mesh size, polynomial degree, or both. A priori error analysis developed in [1] for this method revealed flux
accuracy of order determined by the trace discretizations, despite the resolution increments inside the subregions.
However, enhanced accuracy rates for pressure and super-convergent divergence of the flux can be obtained.

The purpose of the current work is to adapt known a posteriori error estimations for standard single-scale
mixed methods to the multiscale MHM-H(div) context. We adopt a methodology based on a reconstruction pro-
cedure (see [2] for a review on this matter). Given an approximate solution σ and u, the principle is to recover a
second continuous approximation s ∈ H1(Ω) for pressure (known as reconstructed potential) to be used to esti-
mate the unknown exact flux and pressure errors. The algorithm follows two steps: (a) inter-element smoothing,
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where a continuous average of the approximate pressure is defined over the mesh skeleton, and (b) the solution of
local Dirichlet problems using the interelement average pressure as Dirichlet boundary data.

The outline of the paper is the following. In the next section, the main aspects of the MHM-H(div) scheme
for the model problem is summarized. Section 3 is dedicated to the derivation of the desired a posteriori error
estimates. In Section 4 a set of numerical examples are presented to verify the efficiency and robustness of our
estimates. Finally, we end the paper with some concluding remarks in Section 5.

2 Multiscale Hybrid Mixed Method

Let Ω ⊂ R2 be a polygonal (polyhedral) computational domain with boundary ∂Ω = ΓD ∪ ΓN ∪ ΓR, with
ΓD, ΓN and ΓR being the disjoint parts where Dirichlet, Neumann and Robin boundary conditions are enforced.
For simplicity, assume ΓD ∪ ΓR has a non-vanishing measure, as a guarantee for solution uniqueness. The model
Darcy’s problem considers fields for flux σ and fluid pressure u defined in Ω satisfying the equations:

σ = −K∇u, in Ω

∇ · σ = f, in Ω

u = uD on ΓD, σ · nΩ = σN on ΓN , σ · nΩ = αR(u− uR) + g on ΓR,

where nΩ is the outward unit normal over ∂Ω, f ∈ L2(Ω), uD ∈ H1/2(ΓD), uR ∈ H1/2(ΓR), σN ∈ H−1/2(ΓN ),
g ∈ L2(ΓR), K is a bounded symmetric positive definite tensor, and αR is a continuous, strictly positive function
on ΓR (bounded above and away from zero). Observe that a Neumann condition occurs on ΓN ∪ ΓR if αR → 0,
and a Dirichlet condition on ΓD ∪ ΓR happens for αR →∞. The Robin condition appears for 0 < αR <∞.

2.1 Two-scale mixed FE formulation

Mixed methods for Darcy’s flows are formulated as minimization problems constrained by the realization
of the divergence equation, and pressure plays the role of the corresponding Lagrange multiplier. Therefore, for
stability, the FE pair of spaces for flux and pressure can not be chosen arbitrarily: they should be divergence-
consistent. For multiscale applications, the MHM-H(div) scheme is a local-global characterization of a stable
mixed formulation using a two-scale FE pair Eγ = V γ × Uγin ⊂ H(div,Ω) × L2(Ω), verifying the divergence-
constraint∇·V γ = Uγin . The two-scale parameter γ := (γsk, γin), where γsk = (hsk, ksk) and γin = (hin, kin)
are used to indicate the mesh widths and polynomial degrees of the two-scale levels, coarse and refined.

For the FE spaces Eγ , consider the mixed FE formulation MFEM(γ): find σ ∈ V γ , with σ · nΩ = σN on
ΓN , and u ∈ Uγin such that, for all q ∈ Vγ , with q · n|ΓN

= 0, and v ∈ Uγin , the next equations are verified:∫
Ω

K−1σ · q dx+

∫
ΓR

α−1
R (σ · n)(q · nΩ) ds−

∫
Ω

u∇ · q dx =

∫
ΓR

(α−1
R g − uR)(q · nΩ) ds

−
∫
∂ΓD

uD(q · nΩ) ds, (1)∫
Ω

∇ · σv dx =

∫
Ω

fv dx. (2)

This two-scale formulation is treated in [1] for ΓD = ∂Ω, and the single-scale case for Robin boundary problems
ΓR = ∂Ω is treated in [3, 4]).

Two-scale mesh and FE space setting Let T = {Ωi} be a partition of Ω by general non-overlapping polyhedral
subdomains Ωi, and associated to T define the mesh skeleton Γ formed by the union of the faces F ∈ ∂Ωi.
Consider a fixed normal vector field n defined over Γ ( i.e., n|∂Ωi

= δnΩi , δ ∈ {1,−1}).
Firstly, a coarse single-scale framework is defined satisfying the following properties:

• There is a conformal shape regular partition Thsk
of Ω formed by the union of sub-meshes T Ωi

hsk
= {K}

of Ωi, the elements K having usual triangular or quadrilateral geometry, with characteristic size hsk. A
partition T Γ

hsk
is induced over Γ by Thsk

, and for F ⊂ T Γ
hsk
∩ ∂Ω assume F ⊂ ΓD or F ⊂ ΓR.

• There is a divergent-consistent FE pair Eγsk = Vγsk × Uγsk , and a FE space Λγsk defined over Γ by the
traces q · nΓ, q ∈ Vγsk .

Then, a two-scale setting is formed as follows:
• Refined internal partitions T Ωi

hin
are obtained by subdivision of T Ωi

hsk
(hin ∼ hsk/2

`, ` ≥ 0), and divergent-
consistent FE pairs Eγin(Ωi) = Vγin × Uγin , based on T Ωi

hin
, are considered for kin = ksk + n, n ≥ 0.

• Two-scale flux FE spaces Eγ = V γ × Uγin are defined: Uγin = {v ∈ L2(Ω); v|Ωi
∈ Uγin}, and

V γ = {q ∈ H(div,Ω);q|Ωi
∈ Vγ(Ωi)}, where Vγ ⊂ Vγin(Ωi) refers to constrained vector functions
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such that q · n|F ∈ Λγsk |F , for F ⊂ ∂Ωi \ ∂Ω. Notice that this flux space with constrained trace is well
defined since, by construction, Λγsk ⊂ Λγin , where Λγin is the space of traces induced by Vγin over Γ.
The next diagram illustrates some aspects of the two-scale hierarchy of MHM meshes and FE spaces.

ksk = 2

ksk = 1

kin = 3

kin = 2hin

hsk

T Γsk

Ωi

T Ωi

hin

Figure 1. Diagram illustration of a MHM mesh with 3 × 3 subregions, each being uniformly refined two times,
and skeleton edges without subdivision.

For triangular or quadrilateral elements K, FE pairs V(K) × U(K) are defined as V(K) = Fdiv
K (V(K̂)) and

U(K) = FK(U(K̂)), backtracking a FE pair V(K̂)×U(K̂) defined in the master element K̂ satisfying U(K̂) =
∇ ·V(K̂). The mappings FK and Fdiv

K are induced by the geometric transformation FK : K̂ → K. Namely, for

scalar functions, p = FK p̂ = p̂ ◦ F−1
K , and for vector functions, v = Fdiv

K v̂ = FK
[

1
JK
DFK v̂

]
, where DFK

is the Jacobian matrix of FK , and JK = |det(DFK)| (Piola transformation). For the current applications, FK is
assumed to be an affine mapping. There exists a variety of stable FE pairs V(K̂)×U(K̂) used in the construction
of flux and potential (pressure) approximations by mixed formulations [5]. Namely, we adopt two families:

• BDMk pair for K̂ = T̂ : V (K̂) = [Pk(K̂)]2, U(K̂) = Pk−1(K̂),
• RT [k] pair for K̂ = Q̂: V (K̂) = Qk+1,k,k(K̂)×Qk,k+1,k(K̂), U(K̂) = Qk,k(K̂),

for k = ksk or k = kin. The scalar polynomials Pk(K̂) are of total degree at most k, for the triangle T̂ . For the
square Q̂, Qk,t(K̂) are the tensor product polynomials of maximum degree k in x and t in y.

Local-global equivalent interpretation This class of two-scale mixed methods was analyzed and implemented
in [1] for Dirichlet boundary problems, where an equivalent interpretation in terms of a local-global hybrid ap-
proach was established - the MHM-H(div) scheme. It has a divide-and-conquer spirit combined with bubble
enrichment techniques and static condensation. In summary, the MHM-H(div) scheme has the following charac-
teristics:

1. There are two operators (upscaling and downscaling) transferring information between the two levels of res-
olution. They can be interpreted as discrete versions of operators used in a hybrid formulation to characterize
the exact solution in terms of components given by well-posed local-global systems.

2. A new trace variable λ (multiplier) is introduced to making the inter-element connection: λ|F ∈ Λγsk for
F ⊂ Γ \ ∂Ω, and λ|F ∈ Λγin for F ⊂ ∂Ω, λsk and λin are coarse and refined FE spaces peacewise defined
over the mesh skeleton Γ.

3. An orthogonal decomposition is set for the pressure u = u0 + u⊥ in terms of a coarse component u0 ∈ U0 ,
piecewise constant over T , and a fine scale component u⊥ in the L2-orthogonal complement of U0 in Uγin .

4. By static-condensation, λ and u0 are computed by a stable global system (upscaling stage).
5. In the second fine scale, u⊥ andσ are computed by a set of independent problems restricted to the subregions

Ωi ∈ T , taking λ as Neumann boundary data over ∂Ωi, and using the mixed formulation based on the local
FE settings Vγ(Ωi)×U⊥γin(Ωi), where U⊥γin(Ωi) are functions of zero mean in Ωi. The equations are tested
against bubble functions (having support in the corresponding subregion).

6. The downscaling local problems favor the use of parallel strategies.

3 A Posteriori error estimation

A posteriori error estimation is fundamental for efficient error control of numerical simulations. Usually, they
give local error indicators defined in terms of the computed approximations and can be used to control the error
and/or to adaptively modify the discretization to get the desired accuracy with reduced computational effort [6].
Essentially, some properties are expected for an optimal a posteriori error estimator. Namely, a guaranteed upper
bound should be provided, meaning that if ηΩi

denote local error estimations, then Eex . Eest =
∑

Ωi∈T ηΩi
.

The quality of an error estimator is measured by its efficiency index, that is the ratio of the estimated error and
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the true error, Ieff =
Eest
Eex

. An error estimator is supposed to be efficient, i.e., Ieff → 1 as the discretization

resolution increases. The local estimators ηΩi must also be locally efficient, in sense that they provide a lower
bound of the local error, ηΩi

≤ CΩi
Eex(Ωi), for some constant CΩi

> 0. Finally, ηΩi
have to be computable.

The approach adopted in the current work has been explored in [6–8], for ΓD = ∂Ω, and uD = 0, using a
reconstructed potential function s ∈ H1(Ω), obtained from information given by the approximate pressure u.

Theorem 3.1. Let (σ, u) ∈ V γ ×Uγin be the solution of a mixed formulation (1)-(2), and suppose s is a potential
reconstruction of u. If Πγin : L2(Ω)→ Uγin is the L2-orthogonal projection, and ||| · ||| = ‖K−1/2(·)‖ then,

1. Upper bound: |||σex − σ|||2 ≤
∑

Ωi∈T

(
η2
R,Ωi

+ η2
P,Ωi

)
,

where ηR,Ωi
=
C

1/2
P hΩi

c
1/2
K,Ωi

‖f − Πγin(f)‖Ωi
, ηP,Ωi

= |||σ + K∇s|||Ωi
, CP is the constant from Poincaré

inequality, cK,Ωi is the smallest eigenvalue of K on Ωi, and hΩi is the diameter of the subdomain Ωi.
2. Local efficiency: If T is a regular mesh, it holds for all Ωi ∈ T

ηP,Ωi ≤ |||σex − σ|||Ωi + |||K∇s− σex|||Ωi ,

ηR,Ωi ≤
C

1/2
P hΩi

c
1/2
K,Ωi

[(
1 +

1

c̃1

)
‖f −Πγin(f)‖Ωi +

h−1
Ωi

c̃2
‖σex − σ‖Ωi

]
.

where c̃i, i = 1, 2 are constants that dependent of kin and Ωi, but are independent of hΩi
.

The proof of local efficiency follows by using bubble functions and traditional techniques. Notice that error
estimates for pressure are stated in [8, Theorem 6.10].

3.1 Potential reconstruction for the two-scale formulation MFEM(γ)

Usually, the auxiliary reconstructed potential s used in the estimators for mixed FE methods can be obtained
after three steps [6]: (a) post-processing, solving local Neumann problems by the H1-conforming formulation
based on an enhanced FE space, (b) inter-element smoothing procedure for the pressure, and (c) solution of Dirich-
let local problems by the H1-conforming formulation, taking the smoothed pressure in the boundary data. Notice
that for approximations (σ, u) ∈ V γ × Uγin given by the two-scale MFEM(γ) formulation (1)-(2), the pressure
is already computed in an enhanced FE space Uγin . Thus, we better skip the pros-processing step. The steps (b)
and (c) adopted in [6] was meant to deal with hp-adaptive mixed FE methods. We adapt them to the more general
two-scale settings with FE pairs V γ × Uγin . In summary, we define the potential reconstruction as the action of
an operator I : Uγin → U cγin , where U cγin ⊂ H

1(Ω) is locally piecewise defined over T Ωi

hin
, with degree kin.

Inter-element smoothing procedure Let T Γ
hin

be the partition induced on Γ by the internal meshes T Ωi

hin
, and

define Λcγin ⊂ Λγin by the continuous functions piecewisely defined over T Γ
hin

by polynomials of degree kin.
Given the approximate pressure u given by the MFEM(γ) formulation, the purpose of the inter-element smothing
procedure is to construct µ ∈ Λcγin , following two consecutive operations.
1. Average over faces F ⊂ T Γ

hin
: set µ|F according to the following cases:

• F = ∂Ki∩∂Kj with Ki ∈ T Ωi

hin
and Kj ∈ T Ωj

hin
: 〈( 1

2 (ω(Ki)u|Ki +ω(Kj)u|Kj )−µ, v〉F = 0, ∀ v ∈
Λγin , where ω(Ks), s = i, j, is the largest eigenvalue of K on Ks.

• F ⊂ ΓD: 〈uD − µ, v〉F = 0, ∀ v ∈ Λγin .
• F ⊂ ΓR: 〈α−1

R (σ · n− g) + uR︸ ︷︷ ︸
u

−µ), ϕ〉F = 0, ∀ v ∈ Λγin .

2. Update vertex components: Let xn be a vertex of the partition T Γ
hin

, and set the pach T (xn) = {F} of faces
F ∈ T Γ

hin
having xn as one of their vertices. Update the values µ(xn) ← 1

ωn

∑
F∈T (xn) µ|F (xn), ωn being

the cardinality of T (xn). Using the hierarchical representation of µ|F in terms of vertex and internal shape
functions, update the vertex component by interpolating the new vertex values µ(xn), but keep the internal one.

Solving local problems Let µ ∈ Λcγin be given by the inter-element smoothing procedure, and set σi := σ|Ωi
.

The potentials si = s|Ωi
are obtained by solving primal FE formulation of local problems in Ωi using µ to set the

boundary data, and FE spaces U cγin(Ωi) ⊂ H1(Ωi), based on T Ωi

hin
, with degree kin. Namely,

(i) ∂Ωi∩∂Ω = ∅: si ∈ U cγin(Ωi), si|∂Ωi = µ, and (K∇si,∇w)Ωi = −(σi,∇w)Ωi , ∀w ∈ U cγin(Ωi)∩H1
0 (Ωi).

(ii) ∂Ωi ∩ ∂Ω 6= ∅: si ∈ U cγin(Ωi), si|∂Ωi\(ΓN∪ΓR) = µ, and ∀w ∈ U cγin(Ωi), with w|∂Ωi\(ΓN∪ΓR) = 0, the
equation (K∇si,∇w)Ωi

+ 〈αRsi, w〉ΓR
= −(σi,∇w)Ωi

+ 〈αRuR − g + σi · nΩ, w〉ΓR
holds.

Since si = µ on ∂Ωi \ ∂Ω, the continuity of s over skeleton interfaces is satisfied, so that s ∈ H1(Ω), as desired.
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4 Verification test problems

This section is dedicated to present and discuss some verification tests for a posteriori error estimation based
on MHM-Hdiv formulation analyzed in the previous sections.

All the tests are available in the computational framework NeoPZ1. The performace of the test are done using:
• The local effectivity index, IΩi

eff =
ηP,Ωi

|||σex − σ|||Ωi

;

• The global effectivity index is defined by Ieff =

(∑
Ωi
ηP,Ωi + ηR,Ωi

)1/2
|||σex − σ|||Ω

,

with ηP,Ωi
and ηR,Ωi

defined in Theorem 3.1.
In all tests, the single-scale FE pair is the Raviart-Thomas RT[1] for quadrilateral elements and Brezzi-

Douglas-Marini BDM1 for triangular elements (ksk = 1).

Smooth solution on non-convex subregions Consider a rectangular domain Ω = (0, 1)2 and choose the load
function f , such that the exact pressure is given by the smooth function u(x, y) = sin (2πx) sin (2πy). The
boundary is configured such that ∂Ω = ΓD, on which a pressure uD = u(x, y)|∂Ω = 0 is enforced and the
permeability tensor K is the identity.

The two-scale mesh is created such that, each sub-region is a L-shaped, non-convex geometry (Figure 2 (a)),
composed of 3 quadrilateral elements. The edge elements of the skeleton are subdivided accordingly to internal
subdivision, so that hin = hsk. The polynomial degrees are ksk = 1 and kin = ksk + 3 = 4.

Figure 2 (b) depicts the behavior of the local effectivity index per sub-region. The global index is Ieff =
1.02561 as expected indicating that the precision for the error indicator doesn’t depend on mesh regularity.

(a) T (b) IΩi

eff

Figure 2. Smooth solution: The local effectivity index (b) for non convex mesh (a) expressed in terms of degree of
freedom ans using the space configuration ksk = 1 and kin = ksk + 3.

Singular solution on L- shape domain Our goal here is to study the performance of the error indicator and
the effectivity index when the solution has a high gradient. For this purpose we consider the L-shaped domain
Ω = [−1, 1] × [−1, 1] \ [0, 1] × [−1, 0] and the exact solution given by u(r, θ) = r2/3 sin(2θ/3) with Dirichlet
boundary condition and the permeability tensor K is the identity. Observe that u(x, y) ∈ H3/2−ε for all ε > 0 and
has the singularity at the origin of the L-shaped domain.

There is no mesh subdivision with hin = hsk = 2−3, ksk = 1 and kin = ksk + 3 = 4.
The results for the local exact error and local estimated error per sub-region are plotted in Figure 3. Observed

that the biggest values of the exact errors (Figure 3 (a)) and estimated errors (Figure 3 (b)) are around the origin of
the domain, where the singularity is located. These results suggest that the error indicator defined on Theorem 3.1
can be used in adaptive process and the adaptive meshes should be refined into this corner.

Figure 4 shows the history of convergence as hsk → 0. As expected, the global effectivity index asymptoti-
cally approaches to one.

A synthetic reservoir model For this test we consider the UNISIM-II, a synthetic benchmark reservoir model
developed by UNISIM-CEPETRO-Unicamp [9] 2. The physical configuration is composed of two injection and
three production wells that are placed in the domain, with arbitrary pressures of +20 and −10 respectively. A
homogeneous Neumann boundary condition is imposed in the far-field.

The reservoir is modeled using a triangular mesh, created from the point cloud of UNISIM-II. The geometry
was pre-processed from the layers horizons and meshed in an unstructured way (Figure 5 (a)). Every element of

1http://www.labmec.org.br/wiki/neopz/start
2https://www.unisim.cepetro.unicamp.br/benchmarks/br/unisim-ii/overview
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(a) |||σex − σ|||Ωi
(b) ηP,Ωi

Figure 3. Singular solution: (a) local exact error and (b) estimated error for L-shape mesh using space configura-
tions of type ksk = 1 and kin = ksk + 3, hin = hsk = 2−3.

10−1.5 10−1 10−0.5

10−2

10−1

h

Estimated error
Exact error

(a) Estimated and exact error

10−1.5 10−1 10−0.5
10−1

100

101

h

I e
f
f

Effectivity index

(b) Effectivity index

Figure 4. Historic of convergence for the singular problem: In the left side the curve of estimated error (blue line)
and exact error (red line), on right side the curve of the effectivity index.

(a) Original mesh (b) Pressure approximation

(c) Flux approximation (d) Local estimator error ηP,Ωi

Figure 5. Results for UNISIM-II problem: Approximation for pressure (b), flux (c) and the local estimated error
(c) using the space configuration ksk = 1 and kin = ksk + 1 and hin = hsk/4.
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



G. A. Batistela, D. de Siqueira,P. R. Bösing, P. R. B. Devloo, S. M. Gomes

the original mesh define a subregion, which is uniformly refined twice internally, meaning that, hin = hsk/4 and
the approximation space configuration is ksk = 1 and kin = ksk + 2 (for the BDM pair this correspond to normal
flux degree one, bubble fluxes of degree three and pressure of degree two).

Figure 5 (a) shows the mesh that corresponds to the geometry of the MHM domains: the solution within each
MHM triangle is approximated with 16 triangles. Contour plots for pressure and flux are shown in Figure 5 (b)
and (c) respectively and the estimated error is plotted in Figure 5 (d).

Even though the results are qualitative, larger errors are estimated in domains that can be intuitively under-
stood. The triangles coloured red (largest errors) are geometrically large elements in a region where the flux varies
strongly. The feedback the numerical analyst receives of such estimate can be used to create a more optimized
mesh in a straightforward way.

In future research we intend to use the a-priori flow calculations to generate a mesh that is aligned with the
flow lines. We expect that the estimated errors for such meshes will be much smaller.

5 Conclusions

The two-scale MHM-H(div) method is formulated for Darcy’s problems under general Dirichlet-Neumann-
Robin boundary constraints. A posteriori error estimations are applied to control the error of solutions given by
this method. Work is in progress to: a) incorporate boundary effects, b) obtain estimations for the trace variable,
and c) evalute the estimators for heterogenous media.
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