
Dynamic mode decomposition for density-driven gravity current simulations

Gabriel F. Barros1, Adriano M. A. Côrtes2, Alvaro L. G. A. Coutinho1
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Abstract. In the present work, we evaluate the capability of the Dynamic Mode Decomposition method to extract

spatio-temporal coherent structures of density-driven gravity current simulations. The coupled problem is solved

using the finite element method, and DMD is applied in the concentration dataset instead of all the simulation data.

We generate reduced order models from the DMD with a different number of computed basis vectors and evaluate

their accuracy and performance to capture the dynamics from the original system. We also extend our analysis to

two relevant quantities of interest, the front position and mass conservation, testing the accuracy of the surrogate

models. We also evaluate three different implementations of the Singular Value Decomposition, the core procedure

in the DMD, in terms of performance and accuracy. Furthermore, we investigate the extrapolation ability of the

Dynamic Mode Decomposition and evaluate its accuracy when considering different initial conditions.
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1 Introduction

Surrogate models with reduced dimensionality became of great interest among scientists and engineers of

many different fields with the increasing complexity of the problems of interest. In the fluid dynamics community,

the quantitative investigation of complex signals, either numerical or experimental, obtained from nonlinear systems

is a widely addressed topic [1]. Although fluid flows are governed by infinite-dimensional partial differential

equations (the Navier-Stokes equations) and accurate numerical approximations for complex fluid flow simulations

still lead to high-dimensional finite spaces, it is well known that the main, most energetic, features of the flow are

embedded in low-dimensional manifolds [2, 3]. The identification of these low-order dynamics can be obtained

through “modal decomposition” techniques such as the Proper Orthogonal Decomposition (POD) [4, 5], Balanced

Proper Orthogonal Decomposition (BPOD)[6], the Reduced Basis (RB) Method [7] and the Dynamic Mode

Decomposition (DMD) [8–11], where the underlying physics of the system can be represented as a superposition

of proper basis vectors. Each of these methods has its advantages and disadvantages and mathematical foundations,

where the generation of the basis can be obtained from different approaches and have different interpretations.

In the present work, we focus on using DMD on density-driven gravity flows generated by two fluids.

Particularly we focus on computing the position of the front of the current and verifying mass conservation. We

generate surrogate models - or reduced order models (ROMs) - with different numbers of modes that inherit the

low-rank structures of the binary flow presented in the high dimensional data and evaluate their ability to compute

our quantities of interest (QoIs) with reasonable accuracy. We observe that even with a small number of modes, we

achieve accurate results with models generated purely from data with small computational effort. We also compare

three different algorithms for the Singular Value Decomposition (SVD), the core operation in the DMD, in terms

of accuracy and performance. Moreover we test the DMD prediction capability by using the computed basis to

evaluate the evolution of the concentration field for a different initial concentration field. The remainder of this

paper is organized as follows. Section 2 briefly reviews the DMD method. The numerical experiments are given

in Section 3. The paper ends with a summary of our main findings.
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2 Dynamic Mode Decomposition

Dynamic Mode Decomposition is an equation-free, data-driven method that provides accurate assessments of

the spatio-temporal coherent structures in a given complex system or short-time future estimates of such a system.

In the fluid dynamics context, DMD has been applied to a wide variety of flow geometries (jets, cavity flow, wakes,

channel flow, boundary layers, etc.) to study different phenomena [10]. It is one of the many machine learning

methods related to dimensionality reduction on fluid dynamics data [3] and, among its applications, the DMD has

been used mainly for structure extraction from fluids data and control-oriented methods. However, the ability of

the DMD to synthesize data from simulations or experiments into ROMs with good extrapolation properties is still

an active research topic, although several works presented advances in this direction [12, 13].

The DMD consists on splitting the dataset Y = [y(t0) . . .y(tm)] ordered in time into two datasets Y1 =
[y(t0) . . .y(tm−1)] and Y2 = [y(t1) . . .y(tm)], where m is the total number of observations in time of the

dynamical system, and obtaining a linear mapping (matrix) A from dataset Y1 to dataset Y2, that is, Y2 = AY1.

The computation of A can be done as A = Y2Y
†
1
, where Y

†
1

is the Moore-Penrose pseudoinverse of Y1. Since

fluid dynamics problems are often high-dimensional, the computation of the full Moore-Penrose pseudoinverse

m× n could be expensive as well as highly ill-conditioned. In this case, we could consider computing Ã, a r × r
projection of A where r < m ≪ n. This can be done by factorizing the Y1 into a SVD such that Y1 = UΣVT

and truncate the generated matrices by rank r. We can then obtain Ã as,

Ã = UT
r Y2VrΣ

−1

r . (1)

With the computation of Ã the matrix Ψ containing the DMD modes (technically, the Koopman modes [10])

can be extracted from the dataset with the relation,

Ψ = Y2VrΣ
−1

r W, (2)

where W are the eigenvectors of Ã. The signal reconstruction can be done as y(t) ≈ ỹ(t) = bΨ exp(Ωt), being

b the vector containing the projected initial conditions such that b = Ψ†y(t0), and Ω is a diagonal matrix whose

entries are the eigenvalues ωi = ln(λi)/∆t, where λi is an eigenvalue of Ã, and ∆t the time step size.

DMD relies on a sequence of linear algebra operations and one of them - the SVD - is directly responsible

for the dimensionality reduction of the problem. SVD can represent a significant part of the computational effort

of the code, meaning that improving SVD performance leads to significant CPU time gains. There are various

algorithms for this purpose. In the present work, we implement the randomized SVD (rSVD for short) algorithm

[14], a non-deterministic algorithm able to compute the near-optimal low-rank approximation of a given large

dataset with good efficiency. The implementation of the rSVD is the first step for future different applications

possibilities such as the use of DMD for real-time computations considering low-rank updates on an existing SVD

[15]. The rSVD presents two features: oversampling, adding p columns to the random projection matrix leads to

an accuracy gain of the algorithm (as a rule of thumb, 5 to 10 extra columns suffice), and power iteration, to force

the decay of singular values when needed, where the number of power iterations q is an input parameter (usually

less than 5). Our implementation relies on built-in functions of NumPy [16], a high-performance Python package

with C bindings, for the key computational costs such as matrix products.

3 Numerical experiments

In this section, we evaluate the DMD use on density-driven gravity flows. The simulation consists of a

lock-exchange between two fluids, the heavy fluid, A, and the lighter fluid, B, based on the numerical example in

[17]. The difference between their densities is such that the Boussinesq hypothesis is considered valid. Moreover,

particles in the heavy fluid have negligible inertia and are much smaller than the smallest length scales of the

buoyancy-induced fluid motion. Thus, the dimensionless governing equations are,

∇ · u = 0,

∂u

∂t
+ u · ∇u+∇p− 1√

Gr
∆u− φeg = 0,

∂φ

∂t
+ u · ∇φ− 1

Sc
√
Gr

∆φ = 0,

(3)
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where u is the fluid velocity, φ is the concentration field, p is the pressure, eg = (0,−1) is the vector pointing in the

direction of gravity, Sc = 1.0 is the Schmidt number and Gr = 5× 106 is the Grashof number, two dimensionless

numbers that relate viscous effects with diffusion and buoyancy effects, respectively. A Grashof number of this

magnitude indicates a turbulent flow. The field φ = φA/φB is the concentration and is responsible for mapping

the evolution of fluid interactions. We consider a tank, that is, a rectangular domain with length L1 = 18m,

height L2 = 2m. The initial conditions are such that the heavy fluid is represented as a column with dimensions

L0

x × L0

y = 1m × 2m located at the left border of the tank and the light fluid fills the rest of the domain.

To solve the governing equations, we consider a finite element method spatial discretization and the finite

difference method to approximate the evolution of the fields in time. We use the FEniCS 2019.1 [18] framework

to generate our full order model (FOM) data. To circumvent the LBB-condition, using equal-order interpolation

functions for the velocity-pressure pair, and avoid spurious oscillations in advection-dominated flows, we consider

the residual based variational multiscale formulation of the Navier-Stokes equation. The concentration equation is

predominantly advective, and then we apply the SUPG stabilization to its original Galerkin formulation. Details

of the formulation can be found in [19]. We consider a mesh with 700× 100 cells, where each cell is divided into

two linear triangles.

In this example, we study the use of the DMD for different numbers of Koopman modes, r. We consider the

solution of the finite element approximated equations as our full order model (FOM) and aim to build reduced order

models (ROMs) that can work as surrogate models satisfying mass conservation and reproducing the evolution of

the front position. Furthermore, we investigate the influence of three algorithms, in terms of performance and

accuracy, for the Singular Value Decomposition, the DMD core operation. Also, instead of considering the totality

of the simulated data from our FOM - that is, velocity, pressure, and concentration - for the generation of our

reduced basis, we only take into account the concentration field, reducing the amount of processed data in the

DMD by 75%. The next step is to define the number of Koopman modes, r, that our ROMs will inherit. According

to [20], a good a priori estimate for r is by considering the value of

κ =

∑r

i=1
σi∑m

i=1
σi

≥ τ, (4)

the retained energy of the low-rank approximation, where m is the rank and σi is the i-th singular value of Y1,

and τ is a prescribed tolerance such as 0.999999. That is, as r approaches m, κ approaches 1.0, and the truncated

matrix inherits more information regarding the original dataset. The singular values of the concentration dataset

are shown in Fig. 1. The figure shows the decay of the singular values as r increases and the value of κ for different

chosen values of r. It is important to reiterate that the use of this a priori estimates gives us a good starting point

to select r, but it is not directly related to any a posteriori error estimation relative to the reconstructed solution.

Figure 1. Singular values of the snapshots matrix, our selection of r and their respective values of κ.

We now reconstruct our solutions using DMD. As a first step, we compare the accuracy and performance of

three SVD algorithms: NumPy SVD [16], Scikit-learn rSVD [21], and our implementation of the rSVD. NumPy

SVD function invokes the high-performance LAPACK routine _gesdd while both rSVD algorithms are the

implementation of the method proposed in [14] and are solved using 1 power iteration and 5 additional vectors for

oversampling. Figure 2 shows the relative error and speed-up achieved by each algorithm for increasing values of

r. In the figure, the NumPy SVD is identified simply by SVD, the Scikit-learn by SKSVD, and our implementation
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by rSVD. The relative error (η) is computed as the Frobenius norm of the difference between the matrix whose

columns are obtained from reconstructed solution and the original dataset Y, divided by the Frobenius norm of

the original dataset. The speed-up is evaluated as the ratio between the DMD CPU time and the FOM CPU

time (including I/O), for increasing r. We note in Figure 2(a) that the three SVD algorithms presented the same

behavior with negligible differences, revealing an exponential decay of the error while increasing the truncation

rank r. We can also observe that the original implementation of the SVD is slower than the rSVD implementations

for increasing r. The rSVD presented similar results, meaning that - for this given dataset size - our implementation

of the rSVD is competitive when compared with the existent in a high-performance library in Python. From Figure

2(b), we observe that the DMD implementation using Numpy SVD is around 70 times faster than the FOM while

the use of the rSVD increases this factor to 150−275. We notice, however, that the rSVD implementations present

a significant speed-up decrease with increasing r in comparison with the SVD implementation, in a sense that a

DMD with r = 100 considering our implementation of the rSVD is twice as faster than the same code running

with r = 250. Therefore, the choice of the rank r is important for the efficiency of the DMD when considering the

randomized SVD.

(a) Relative error (η) between reconstructed and original

datasets

(b) Speedup in comparison with the FOM simulation

Figure 2. Accuracy and performance evaluations of the DMD code for each of the three SVD algorithms.

We also compare a snapshot from the original dataset with the DMD reconstruction. Figure 3 shows the

reconstruction of the concentration field at t = 15s with 100 and 250 modes, that is, our worst and best reconstructions

in terms of relative error according to Figure 2. We observe that the reconstruction for r = 100 reveals some

spurious oscillations while the solution with 250 modes has an excellent agreement with the FOM. However, these

oscillations do not largely affect the shape, size, or position of the vortices generated by the Kelvin-Helmholtz

instability and the front position. Furthermore, we postprocess the results and evaluate the ROM accuracy for

two different QoIs, mass conservation, and the front position. Figure 4 and Table 1 shows the results, where the

full black line represents the FOM data. We note that the ROMs inherit the FOM mass conservation property

despite the reduced number of Koopman Modes used. Furthermore, the surrogate models provide an excellent

representation of the front position xf even for r = 100. We also observe from Table 1 that the ROMs results

approach the FOM data for an increasing number of Koopman Modes.

Table 1. Relative error for the quantities of interest

Koopman Modes Mass conservation Front position

100 7.2435× 10−4 3.1757× 10−3

150 6.9677× 10−4 2.9271× 10−3

200 6.1054× 10−5 1.9765× 10−3

250 2.3256× 10−5 1.2555× 10−3

We extend our analysis and investigate the use of DMD to generate accurate representations for a different

case. For the width of the heavy fluid column L0

x = 1.2m, we use the r = 100 previously computed Koopman
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(a) Reduced Order Model: r = 100

(b) Reduced Order Model: r = 250

Figure 3. Concentration field at t = 15s. Solution for r = 250 is indistinguishable from the FOM.

(a) Mass conservation (b) Front position

Figure 4. Comparison of quantities of interest for different values of r.

Modes to predict the new concentration field. The initial condition for this case is projected into the reduced

subspace by projecting b = Ψ†y0. Results regarding the quantities of interest are seen in Figure 5, where we

compare the results predicted by the ROM with the corresponding FOM. We observe from both pictures that, even

though the basis is constructed from data collected from a different simulation, the ROM can predict the FOM

behavior with reasonable accuracy for both quantities of interest. The relative errors for mass conservation and

front position are 2.641 × 10−3 and 2.956 × 10−2, respectively. In terms of efficiency, we note a speedup of

approximately 1273, that is, the ROM can be solved 1273 times for one FOM solving.

We also analyze the formation of the Kelvin-Helmholtz vortices in the ROM. Figure 6 shows the solution of

the FOM and the ROM at t = 30s and we note that the ROM is able to predict the flow physics. Table 2 compares

the position of the vortices for both cases and we note that, despite of the dimensionality reduction, the formation

of the vortices and their position are predicted with reasonable accuracy.

4 Conclusions

In the present work, we evaluated the effects of surrogate models created by the Dynamic Mode Decomposition

method on a finite element simulation of complex density-driven flows. We consider only the concentration field
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(a) Mass conservation (b) Front position

Figure 5. ROM and FOM results for the quantities of interest (L0

x = 1.2m).

(a) Full Order Model

(b) Reduced Order Model (r = 100)

Figure 6. FOM and ROM solutions at t = 30s (L0

x = 1.2m).

Table 2. Positions of vortices A, B and C at t = 30s, L0

x = 1.2m

Vortex Full Order Model Reduced Order Model

A 13.78 13.60

B 11.37 11.59

C 10.03 10.15

for the snapshots dataset and construct our surrogate models from 25% of the available data. We extract different

numbers of Koopman Modes from the data and reconstruct the original signal with different SVD algorithms

to test their performance and accuracy. We observe that the two randomized SVD algorithms present a better

computational performance than the standard SVD code with negligible accuracy differences. Furthermore, we

post-process our FOM and ROM data to evaluate the impact of dimensionality reduction on the usual quantities of

interest in this problem. We notice that all the tested surrogate models reveal a similar behavior regarding the FOM,

with better relative error compared with the prescribed error of the reprojected solutions. Even if the reconstructed

solutions do not achieve a given relative error tolerance, the quantities of interest are well approximated. We extend

our analysis and use the DMD to predict the evolution of the concentration field for a different simulation. We

compared the obtained solutions with the full order model relative to the new configuration and noted that the
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DMD could predict the flow dynamics even with a relatively small number of Koopman modes.
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