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Abstract. Sedimentation in reservoirs results in loss of their storage capacity and impacts the fauna where it is
located. Therefore, effective sediment management is an important task to increase reservoir lifetime and mitigate
the damage that sedimentation may cause. Turbidity currents are the primary source of sediments in reservoirs.
Venting them reduces sedimentation. Numerical models are an efficient tool for studying venting. In this work, we
have introduced a model to predict the flow of particle-driven gravity currents, and we apply it to study the venting
process in reservoirs. The mathematical models result from the incompressible Navier-Stokes equations combined
with an advection-diffusion transport equation for suspended sediments. We implement the mathematical model
in libMesh, an open finite element library that provides a framework for multiphysics numerical simulations.
The model is successfully verified and validated using literature data of lock exchange experiments. We test the
capability of the model to optimize the venting of turbidity currents as an efficient sediment management strategy
for reservoirs. The results show that the concentration field during venting agrees well with observations from
laboratory experiments.
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1 Introduction

Sedimentation is a problem that most reservoirs face worldwide. Sedimentation causes losses in storage
capacity of reservoirs and, consequently, a decrease of energy production [1]; blockage of outlet structures; and
downstream impoverishment of river ecosystems, causing coastal land loss and problems with agriculture. There-
fore, effective sediment management is an important task to increase reservoir lifetime and mitigate the damage
that sedimentation may cause. Turbidity currents are the primary source of sediments in reservoirs. They are a
group of density currents formed during yearly floods and transport a large amount of suspended sediment from the
watershed into the reservoir. After a certain time, the sediments will settle and, in the long term, fill the reservoir,
particularly near the dam and its outlet structures.

Venting represents adequate means to reduce sedimentation in reservoirs where turbidity currents frequently
occur. This sediment management strategy aims to route turbid water through bottom outlets as soon as it reaches
the dam. Thus, it reduces sedimentation by evacuating the sediments before they settle. One significant advantage
is that the reservoir level does not have to be drawn down during these operations, and the outflow discharges
remain relatively small. Therefore, venting operations are increasingly appreciated for both economic and envi-
ronmental reasons [2].

Numerical models are an efficient way to study this relevant process. In this paper, we model gravity currents
coupling the Navier-Stokes equations with a sediment transport model, which are solved with the residual-based
variational multiscale finite element formulation [3]. We consider adaptive mesh refinement based on the flux
jump of the sediment concentration errors in our simulations. All implementations in this work uses the libMesh
library. libMesh is an open-source library that provides a platform for parallel, adaptive, multiphysics finite
element simulations [4]. The main advantage of libMesh is the possibility of focusing on the implementation of
modeling specific features without worrying about adaptivity and code parallelization. Consequently, the effort to
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build a high performance computing code tends to be minimized.
This study aims to predict the gravity currents flow within a simple 2D model, and thus, to study the venting

efficiency in reservoirs. The remainder of this paper is organized as follows. We start in section 2 with a description
of the problem of interest. Then, we present the coupled Navier-Stokes equations for sediment transport. In section
4, we present the sediment transport equations. Section 5 provides the validation of our model and the results
obtained. Finally, the paper ends with a summary of our main conclusions.

2 Problem Description

This work studies venting efficiency by changing the flow rate at the outlet in a simple 2D model. The
efficiency measure is the global venting efficiency (GVE) index. GVE is defined for a time step t, as the ratio of
the total sediment mass entering the reservoir to the vented mass of sediment until t, that is,

GV E(t) =

∫ t

0
cinQindτ∫ t

0
coutQoutdτ

. (1)

Therefore, the venting in reservoirs is studied here by reproducing the experimental set-up of Chamoun et al.
[2]. It was carried out in a channel with a length L = 6.7m, width b = 0.27m, and depth H = 1m. The channel
representing the reservoir is initially filled with clear water, with a water depth of 0.8m. The channel is constantly
fed with Qin = 0.001m3/s of a sediment-water mixture with a volumetric concentration of 2.3% (27g/L). A
bottom outlet 0.12m high and 0.09m wide is placed at the end of the channel through which water is vented at
specifics flow rates. In this work, we simplify the experiment by using a 2D model. Figure 1 shows a schematic of
the reproduced model.

Figure 1. 2D schematic sketch of the experiments.

The inflow velocity is calculated as uin = Qin/Ain, where Ain is the cross-section area of the channel
(0.27m2). Venting degrees, defined as the ratio between outflow and inflow turbidity current discharges, are
ΦV ENT = 30%, 80%, 100% and 125%. Thus, we calculate the outflow velocity as uout = ΦV ENTQin/Aout,
with Aout being the cross-section of the venting channel (0.0108m2). The beginning of venting is synchronized
with the arrival of the turbidity current at the outlet. We aim to obtain the sediment concentration that leaves the
channel, cout, at this boundary. Sediment properties used in the venting experiments are: particle sizes d10 =
66.5µm, d50 = 140µm and d90 = 214µm, with a density of ρs = 1160kg/m3 and a estimated settling velocity
of us = 1.5mm/s. Here, we consider only the average particle size d50 = 140µm. To model this problem, we
couple an advection-diffusion equation for the sediment transport with the Navier-Stokes equations. The following
sections briefly present the governing equations.

3 Navier-Stokes Equations

The Navier-Stokes equations govern the fluid flow, which leads to the following nonlinear mathematical
problem to be solved: let us consider a space-time domain in which the flow takes place in the domain Ω ⊂ Rnsd ,
where nsd is the number of space dimensions, along with the interval [0, tf ]. Let Γ denote the boundary of Ω. Find
the pressure p and the velocity u satisfying the following equations,

ρmix
∂u

∂t
+ ρmixu· ∇u +∇p−∇· (µmix∇u)− ρmixg = 0 in Ω× [0, tf ] (2)

∇·u = 0 in Ω× [0, tf ] (3)

in which ρmix is the density of the sediment-water mixture, function of the concentration of sediments in suspen-
sion c (usually given in ppm or percentage),
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ρmix = cρsed + (1− c)ρwater. (4)

The Boussinesq approximation states that the density variation is only important in the buoyancy term (ρg).
The advantage of this approximation arises when considering a flow with two densities ρ1 and ρ2, where the
difference ρ1 − ρ2 is negligible. Under these circumstances, the only sensible way that acceleration due to gravity
g should enter into the equations of motion is in the reduced gravity g′, where,

g′ = g
ρ1 − ρ2
ρ2

. (5)

Considering ρ2 = ρwater and ρ1 = ρmix, we can rewrite equation (2) in function of ρwater as,

ρwater
∂u

∂t
+ ρwateru· ∇u +∇p−∇· (µwater∇u)− gc(ρsed − ρwater) = 0 (6)

Equation (6) is supplemented with proper boundary and initial conditions. To approximate the Navier-Stokes
equations, we use a finite element Residual-Based Variational Multiscale Formulation (RBVMS). Detailed reviews
of the RBVMS formulation can be found in [5–8]. A complete description of the methods used in this work can
be seen in [3, 9]

4 Sediment transport equations

The particle transport in suspension can be computed by the concentration distribution by means of an
advection-diffusion equation with the form,

∂c

∂t
+ (u + use

g)· ∇c−∇· (εs∇c) = 0 in Ω× [0, tf ] (7)

in which eg is the gravitational acceleration vector, and εs is the sediment diffusivity. The sediment diffusivity εs
may be correlated with the kinematic viscosity of the fluid by εs = νwater/Sc, where Sc is the Schmidt number.

The settling velocity can be estimated by experiments or analytically. Stokes’ solution for the drag resistance
of the flow past a sphere can be expressed by the simplified Navier-Stokes equation together with the continuity
equation in polar coordinates. Using his solution, the following expression for the settling velocity of spherical
particles can be derived [10],

us =
d2(ρsed − ρwater)g

18µwater
. (8)

The boundary conditions may be divided into Dirichlet and Neumann BCs.

c = cD em ΓD (9)

((u + use
g)c− (εs∇c))·n = hT em ΓN (10)

where cD is a prescribed concentration and hT is the total flux of sediments at the boundaries. When no mass
exchange happens, as in the free-surface or rigid wall, the total sediment flux is equal to zero. If we have an open
channel, the sediments pass through the open boundary. Then, we want to eliminate the terms on the boundary. For
that, we define the total flux as, hT = ((u+use

g)c− (εs∇c))·n. Through the sediment surface, i.e., the interface
between the sediment and fluid, the sediment exchange depends on the entrainment rate E and the deposition rate
D such that hT = E − D. The deposition rate D, in volume per unit horizontal area and time, is determined
by D = uscb where cb is the sediment concentration very near the bed. The entrainment rate could be computed
based on empirical models [11, 12]. However, we are not considering entrainment of sediments in this work.

5 Results and Discussion

In this section, we assess the accuracy and performance of the numerical method by solving some problems.
First, we validate the code by simulating a lock exchange and comparing it with previous results. Then, we study
the venting efficiency.
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5.1 Validation of gravity currents

Here, we reproduce the lock exchange experiments of Gladstone et al. [13], also presented in [14]. The lock
used in the experiment has dimensions of 20 × 20 × 40 cm. The particles consist of silicon carbide with density
ρsed = 3217 kg/m3, and they have diameters d50 = 25×10−6 m. We consider the settling velocity as us = 0.0005
m/s. The total particle volume fraction in the lock is 3490 ppm. We employ a reduced value of water viscosity,
such as the Reynolds number is Re = 4000, to limit the computational cost. We use a 2D model, as presented
in Figure 2. For the velocity field, free-slip conditions are imposed at the side and top boundaries, while no-slip
is enforced at the bottom wall. Here, we use adaptive mesh refinement. The initial mesh has 356 × 25 bi-linear
quadrilateral elements, and in the subsequent adapted meshes the smallest element has size 0.004 m.

Figure 2. Sketch of the computational setup employed in the present two-dimensional simulation of a particulate
lock-exchange current.

All quantities are normalized by the characteristic parameters, that are the characteristic length Lc, character-
istic velocity ub and characteristic concentration CR, for the sake of results comparison, that is,

u∗ = u/ub (11)

x∗ = x/Lc (12)

c∗ = c/CR (13)

t∗ = tub/Lc (14)

For the lock exchange problem, the characteristic length is defined as half the lock height (Lc = 0.2m in this
case). Then, the characteristic velocity is given by,

ub =

√
Lc
ρsed − ρwater

ρwater
CRg (15)

Figure 3 compares the final computational deposit profiles against the experimental data of Gladstone et al.
[13] and the numerical results of Nasr-Azadani et al. [14]. The curves are normalized such that the results integrate
to unity. We observe good agreement between the data.

We also compare the dimensionless friction velocity u∗f , given by u∗f =
√

1/Re∂u∂y . The maximum u∗f
observed in the simulation is recorded approximately at time t∗ = 4.2. Nasr-Azadani et al. [14] have found a
maximum value at t∗ = 4.6 for Re = 4000. Figure 4 displays the spatial distribution of the friction velocity over
the bottom wall at t∗ = 4.6 and Figure 5 the corresponding concentration field. Again, our results are in good
agreement with the other data. These results indicate that our code is capable of representing gravity currents.

5.2 Simulation of venting efficiency

Now, we present the results of the venting efficiency based on the experiments of Chamoun et al. [2]. We
run four venting degrees and compare our results to those in Chamoun et al. [2] and Wildt et al. [15]. Section 2
describes the setup of this problem. Here, we use adaptive mesh refinement. The initial mesh has 335×40 bi-linear
quadrilateral elements, and in the mesh adaptation, we fix the smallest element size to 0.005m. Figure 6 shows the
GV E considering each venting degree. The venting time is normalized based on the aspiration height, hL for the
sake of results comparison. According to Jia-Hua [16] the aspiration height is calculated as,

hL = 5

√
(−1.2)5

ρwaterQ2
V ENT

(ρsed − ρwater)g
(16)

The normalized time t∗ is given by,
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Figure 3. Final deposit profiles for the lock-exchange
turbidity current. (xg is the distance from the lock
gate). Solid blue line: present study for Re = 4000.
Dashed green line: simulation of Nasr-Azadani et al.
[14]. Orange squares: experiments conducted by
Gladstone et al. [13].

Figure 4. Spatial distribution of friction velocity u∗f
on the bottom wall at time t∗ = 4.6. Solid blue line:
present study. Dashed green line: simulation of Nasr-
Azadani et al. [14].

Figure 5. Snapshot of the concentration field (black c∗ = 1, white c∗ = 0) at time t∗ = 4.6.

t∗ = g′
t− Tvi
hL

(17)

where g′ is the absolute reduced gravity and Tvi is the time when the venting starts (Tvi = 150s in all cases).
The GV E increases rapidly as the venting starts. The slope of the lines is then decreased to a constant value

when the flow reaches a steady state. The higher the venting degree, the higher is the global venting efficiency.
However, Chamoun et al. [2] have observed that the GV E does not change much with venting degrees higher
than 100%. Comparing GV E obtained by our numerical model with GV E of the physical model [2] reveals that
venting efficiency is generally overestimated in the simulation. It also happens with the numerical model developed
by [15]. A possible explanation for this is the simplifications used. Even though the solver still can capture the
phenomenon quite well.

The deposit of sediments for the case with Φ = 80% is recorded and compared with [2] and [15]. Figure
7 shows the deposition in different times. In Figure 8, we also show the concentration field for the case with
Φ = 80% at t = 150s, when the venting starts, and t = 500s, when the flow already reached the steady-state. At
this point, the sediments in suspension leave the channel by the venting process.

6 Conclusions

We coupled the Navier-Stokes equations with a sediment transport model to study the venting efficiency
in reservoirs. First, we validated the code by simulating a lock exchange and comparing our results with the
literature. We have found good agreement between the data. Then, we studied the venting efficiency with the
developed model.

We conclude that a simple 2D model, with several simplifications, may represent the behavior of sediments
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(a) GVE with ΦV ENT = 125%. (b) GVE with ΦV ENT = 100%.

(c) GVE with ΦV ENT = 80%. (d) GVE with ΦV ENT = 30%.

Figure 6. Global venting efficiency at different venting degrees ΦV ENT . Comparison with the experiments of [2]
and the numerical solution of [15].

(a) Deposition at t=150 s. (b) Deposition at t=300 s. (c) Deposition at t=450 s.

Figure 7. Sediment deposition along the channel at a venting degree of Φ = 80%. Comparison with the experi-
ments of [2] and the numerical solution of [15].

in a reservoir quite well. Despite the assumed simplifications, the venting efficiency is well predicted, and the
deposition is also similar to the experiments. Some improvements that we propose as future work are: to consider
multiple granulometries, consider the bed elevation due to the deposition, and simulate 3D cases. It is also interest-
ing to assess other ways to define venting efficiency. One important parameter is how much sediment is deposited
at the reservoir bottom and how the venting influences that.
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Figure 8. Concentration field at a venting degree of Φ = 80% in two different time-steps (top: t = 150s, bottom
t = 500s).

Acknowledgements. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior- Brasil (CAPES) - Finance Code 001. This work is also partially supported by CNPq, FAPERJ, ANP and
Petrobras.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] de Miranda, R. B. & Mauad, F. F., 2015. Influence of sedimentation on hydroelectric power generation: Case
study of a brazilian reservoir. Journal of Energy Engineering, vol. 141, n. 3, pp. 04014016.
[2] Chamoun, S., De Cesare, G., & Schleiss, A. J., 2018. Venting of turbidity currents approaching a rectangular
opening on a horizontal bed. Journal of Hydraulic Research, vol. 56, n. 1, pp. 44–58.
[3] Grave, M., Camata, J. J., & Coutinho, A. L., 2020a. Residual-based variational multiscale 2d simulation of
sediment transport with morphological changes. Computers & Fluids, vol. 196, pp. 104312.
[4] Kirk, B. S., Peterson, J. W., Stogner, R. H., & Carey, G. F., 2006. libmesh: a c++ library for parallel adaptive
mesh refinement/coarsening simulations. Journal Engineering with Computers, vol. 22, n. 3, pp. 237–254.
[5] Hughes, T. J. R., Scovazzi, G., & Franca, L. P., 2004. Multiscale and stabilized methods. Encyclopedia of
Computational Mechanics Second Edition.
[6] Rasthofer, U. & Gravemeier, V., 2017. Recent developments in variational multiscale methods for large-eddy
simulation of turbulent flow. Archives of Computational Methods in Engineering, pp. 1–44.
[7] Ahmed, N., Rebollo, T. C., John, V., & Rubino, S., 2017. A review of variational multiscale methods for the
simulation of turbulent incompressible flows. Archives of Computational Methods in Engineering, vol. 24, n. 1,
pp. 115–164.
[8] Codina, R., Badia, S., Baiges, J., & Principe, J., 2018. Variational multiscale methods in computational fluid
dynamics. Encyclopedia of Computational Mechanics Second Edition, pp. 1–28.
[9] Grave, M., Camata, J. J., & Coutinho, A. L. G. A., 2020b. A new convected level-set method for gas bubble
dynamics. Computers & Fluids, vol. 209, pp. 104667.
[10] Cheng, N.-S., 1997. Simplified settling velocity formula for sediment particle. Journal of hydraulic engi-
neering, vol. 123, n. 2, pp. 149–152.
[11] Van Rijn, L. C., 1984. Sediment pick-up functions. Journal of Hydraulic Engineering, vol. 110, n. 10, pp.
1494–1502.
[12] Garcia, M. & Parker, G., 1991. Entrainment of bed sediment into suspension. Journal of Hydraulic Engi-
neering, vol. 117, n. 4, pp. 414–435.
[13] Gladstone, C., Phillips, J., & Sparks, R., 1998. Experiments on bidisperse, constant-volume gravity currents:
propagation and sediment deposition. Sedimentology, vol. 45, n. 5, pp. 833–843.
[14] Nasr-Azadani, M., Hall, B., & Meiburg, E., 2013. Polydisperse turbidity currents propagating over complex
topography: comparison of experimental and depth-resolved simulation results. Computers & Geosciences, vol.
53, pp. 141–153.
[15] Wildt, D., Hauer, C., Habersack, H., & Tritthart, M., 2020. Cfd modelling of particle-driven gravity currents
in reservoirs. Water, vol. 12, n. 5, pp. 1403.
[16] Jia-Hua, F., 1960. Experimental studies on density currents. Water and Energy International, vol. 17, n. 4,
pp. 706–729.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 16-19, 2020


	Introduction
	Problem Description
	Navier-Stokes Equations
	Sediment transport equations
	Results and Discussion
	Validation of gravity currents
	Simulation of venting efficiency

	Conclusions

