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Abstract. The Eikonal equation often appears in problems including, but not limited to, geometric optics, shortest
path problems, image segmentation, seismic and medical imaging. While there are efficient and stable techniques
for solving the Eikonal equation for regular or arbitrary geometries in several dimensions, it remains a big challenge
to solve inverse problems governed by this equation, especially when it comes to uncertainty quantification. As an
alternative to classical methods for solving forward and inverse problems governed by PDEs, the Physics-Informed
Neural Networks (PINNs) have shown accuracy and versatility for solving problems in fluid dynamics, inference of
hydraulic conductivity, velocity inversion, phase separation, and others, being also able to quantify uncertainty in
these problems. Here we study PINNs for solving the forward and inverse probabilistic Factored Eikonal Equation.
We solve the probabilistic inverse problem using variational inference and the Flipout technique. Our results for a
benchmark problem show excellent accuracy.

Keywords: Physics-Informed Neural Networks, Scientific Machine Learning, Factored Eikonal Equation, Inverse
Problems, Uncertainty Quantification

1 Introduction

The Eikonal equation is a first-order nonlinear equation present in many fields. It describes phenomena like
wave propagation for acoustic and elastic media, as well as electromagnetic media [1]. Therefore, the Eikonal
equation plays an important role in problems like geometric optics, shortest path problems, image segmentation,
seismic and medical imaging. The Eikonal equation is given by,

‖∇φ(x)‖2 =
1

v(x)
, ∀x ∈ Ω. (1)

where Ω ⊂ Rnsd , is the domain, nsd = 1, 2, 3 is the number of space dimensions, x = {x, y, z} is the position
vector, and ‖.‖ stands for the L2-norm. Solving this equation for φ(x) for a given velocity field, v(x), and proper
boundary conditions become feasible employing numerical methods as, for example, for cartesian grids, the Fast
Marching Method [2], and the Fast Sweeping Method [3], or, for unstructured grids [4]. A more complicated task
is to find a velocity v(x) that satisfies eq. (1) and a given a set of scattered measures of φ(x). It falls in the class of
inverse problems, which are extremely ill-posed and have no unique solution. Therefore, there is a need for new
techniques for solving both forward and inverse problems governed by the Eikonal equation, particularly when
it comes to uncertainty quantification. However, when point singularities are present, as, in seismic imaging, the
Factored Eikonal Equation (FEE for short) is preferable, as pointed out in [5].

Recently, scientific machine learning methods, and particularly the Physics-Informed Neural Networks (PINNs)
[6–8] have shown considerable success for solving forward and inverse problems, also including uncertainty quan-
tification. PINNs have been used for solving problems governed by the Cahn-Hilliard, Allen-Cahn, and Navier-
Stokes equations [9, 10], solving stochastic PDEs [11], learning pressure and velocity fields for fluid mechanics
problems [12], and solving forward [13, 14] and inverse [15] problems governed by the Eikonal equation. The
present study contributes to expanding the field, tackling direct and inverse problems governed by the FEE. The
remainder of this paper is organized as follows. In Section 2, we briefly present the forward and inverse problems
of interest. In the sequel, Section 3 introduces the PINNs for the direct and probabilistic inverse problems governed
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by the FEE. Section 4 shows our numerical results for both the forward and inverse problems. The paper ends with
a summary of our main findings.

2 Forward and Inverse Factored Eikonal Equation Problems

For some specific situations, the Eikonal equation solution can be factored as φ(xs,xr) = τ(xs,xr)ξ(xs,xr),
where xs is the source position, xr is the receiver position, which can be any point that lies in the domain Ω. For
the particular scenario where a point source is applied as boundary condition, ξ(xs,xr) = ‖xs − xr‖2 represents
the solution of equation (1) for the case where a point source is applied in a domain such as v(x) = v(xr) = 1.
Substituting the factorization of φ in (1), the resulting equation,

τ2‖∇xrξ‖
2
2 + 2τξ∇xrτ · ∇xrξ + ξ2‖∇xrτ‖

2
2 =

1

v(xr)2
(2)

is the FEE. Here, ∇xr is the gradient operator with respect to the receiver position. This formulation is advan-
tageous in situations where φ(x) has point source singularities, which can be well captured by ξ(xs,xr), while
τ(xs,xr) acts as a smooth correction at the neighborhood of the point source singularities [5]. In the forward
problem, equation (2) is only solved for τ which has as boundary condition τ(xs,xr = xs) = 1

v(xs)
. In the inverse

problem, given the source position xs and a set of (few) scattered measurements of φ(x) (here called φdata), one
seeks to find a set of parameters θφ, for representing the solution of the state variable φ, and θv , for representing
the velocity v, that satisfies the PDE and the scattered measurements of φ(x). However, since the inverse prob-
lem is ill-posed and have no unique solution, it is reasonable to pose it as a probabilistic one. Thus, instead of
doing a Maximum a Posteriori (MAP) estimate of θv, we can use the Bayesian framework and try to compute θv’s
posterior probability distribution P (θv|φdata) as,

P (θv|φdata) ∝ P (φdata|θv)P (θv) (3)

where P (φdata|θv) is the likelihood function, P (v) is the parameters’ prior, and P (φdata) is the evidence. We can
approximate P (θv|φdata) by qθv , using Variational Bayesian Inference methods [16], by minimizing,

F(θv) = E [logP (φdata|θv)]−DKL(qθv , P (θv|φdata)) (4)

which is known as the variational lower bound or the evidence lower bound (ELBO). The term E [logP (φdata|θv)]
is the expected negative log-likelihood function and DKL(qθv , P (θv|φdata)) is the Kullback-Leibler divergence
which measures the discrepancy between the true posterior distribution and its approximation.

3 Physics-Informed Neural Networks in a Nutshell

Let Φ(x̂) with x̂ ∈ RNin ,Φ ∈ RNout be a state variable and N a non-linear differential operator such that,

N (x̂; Φ; ...) = 0. (5)

One can choose to approximate the state variable by a convenient representation Φ̂ which could be, among
many possible options, a Neural Network (NN, for short), H(x̂) : RNin → RNout , which falls within the class of
Universal Approximators [17]. By introducing this approximation in eq. (5), it generates a residualR(x̂), that is,

R(x̂) = N (x̂; Φ̂; ...). (6)

By assuming Φ̂ = H(x̂), one can impose the NN to satisfy the PDE residual R(x̂), the boundary and
experimental data, B(Φ̂, x̂), by composing a loss function as,
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L(θ, Ω̄) = wRLR(θ; Ωx̂) + wBLB(θ; ∂Ωx̂) (7)

where Ω̄ = Ωx̂ ∪ ∂Ωx̂, Ωx̂ denotes the set of residual (collocation) points, x̂, ∂Ωx̂ indicates boundary and experi-
mental points, and wR and wB are the weights. The terms LR(θ; Ωx̂) and LB(θ; ∂Ωx̂) are given by,

LR(θ; Ωx) = D{R(x̂), 0}, and LB(θ; ∂Ωx̂) = D{B(Φ̂, x̂),Φdata} (8)

where D{·, ·} is an operator used to measure the discrepancy between two quantities, whose suitable choices
could be the L2, L1 norms, and the Huber Loss [18]. It is also worth to remind that equations (5) and (6) also
encapsulate the velocity, which can be represented as trainable parameters or even by an NN, facilitating the process
of parameter estimation using PINNs. For the sake of generalization in FEE problems with multiple point sources,
we choose to use the same input scheme for our PINN as used in EikoNet [13] where the NN receives not only the
receiver position but also the source’s position. Hence, a unique PINN can solve multi-shot problems like the ones
that arise in geophysics. Consequently, the PINN input vector is a concatenation of xs and xr and it approximates
the field τ(xs,xr) by τ̂(xs,xr) represented in Figure 1 for the 2D case. For inversion purposes, we use a NN to
predict the velocity (NN v for short), which is also represented in Fig. 1. For solving typical deterministic forward
and inverse problems, both NNs can be composed of simple, fully connected hidden layers written in terms of
weights and biases represented by θ (said the network parameters). Here, we call θφ the parameters of the PINN
that solves the FEE, and θv the parameters of NN v . Figure 1 also shows the relationships between the two NNs
and each of the main components of the loss function. It is worth to remind that Automatic Differentiation [19]
computes the NNs derivatives with respect to the input coordinates.
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(b) Loss function composition

Figure 1. Factored Eikonal Equation PINN Scheme.

Therefore, to solve the forward problem (2), given the source position xs and the velocity v(xr), we need to
find a set of parameters θφ that minimizes eq. (7), i.e. with these parameters the NN should satisfy the FEE. The
minimization of the loss function is easily achievable by using methods such as ADAM, RMSProp, Newton-CG,
and LBFGS. For inversion purposes, the velocity is parameterized by NN v , and it is straightforward to think that
we should somehow treat the network parameters θv as random variables to quantify its uncertainties and analyze
how it propagates to v̂(xr). To treat NN v as a Bayesian NN, we substitute its regular dense hidden layers with
Dense-Flipout layers. These layers use the Flipout estimator [20], which applies a Monte Carlo approach to the
posterior distribution by integrating over θv. Flipout has the additional advantage of showing low variance levels
if compared to other methods. We use the implementation of the Dense-Flipout layers in TensorFlow Probability
[21]. Since in NN v all the information regarding the velocity is encapsulated into the residual part of the loss
function, it is not necessary to directly compute the expected negative log-likelihood function shown in eq. (4),
instead, the Kullback-Leibler divergence term is computed by Tensorflow Probability and added into the loss
function (8) with a scale factor γKL = 10−8.
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4 Results and Discussion

Here we solve a mixed problem [15] whose exact solutions for both forward (eq. (9)) and inverse (eq. (10))
problems are given and shown in Figure 2.

φ(x, y) = min
(√

x2 + y2, 0.7
√

(x− 1)2 + (y − 1)2
)

(9)

v(x, y) =

1.0 if
√
x2 + y2 <

√
(x− 1)2 + (y − 1)2

1.0
0.7 otherwise

(10)
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(a) Exact solution, φ(x)
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(b) Ground truth velocity, v(x)

Figure 2. Exact solution and velocity field for the mixed problem in [15]. The circles indicate the positions of the
synthetic measurements.

We need a metric to measure eq. (8). We choose the L2 norm. The NN used to predict the velocity model
is composed of four probabilistic layers using the Flipout [20] technique with ReLU activation, followed by a
linear layer. The NN that predicts the travel time field is composed by five fully connected layers with 20 neurons
each using as activation function the exponentially scaled modified Bessel function of order 1, also followed
by a linear layer in which we apply the abs(·) function to allow only positive values since our factorization is
multiplicative. We use a set of 50 scattered travel time measurements randomly selected inside the domain. As in
[15] we parametrize the NN output that predicts the velocity as v̄(x) = Vmaxσsigmoid(v̂(xr)) with Vmax = 1.0

0.7 ,
and add a Total Variation [22] term to the loss function. The total variation term is necessary to overcome the
excessive noise that appears at the beginning of the training process due to the use of probabilistic layers for
uncertainty quantification instead of initializing and training multiple NNs as in [15]. As shown in [23] the choice
of the weights wR and wB in eq. (7) has a considerable influence on the PINNs convergence. It is recommended
to reinforce the NN to first satisfy the boundary conditions and experimental data to accelerate convergence, which
means that we should have wR, wB > 0 with wR < wB. Here we choose to make wR = 1 while wB = 25.

The problem in eq. (9) can be decomposed in two different problems with point sources located at xs1 =
(0, 0) and xs2 = (1, 1). Their respective solutions are given by φ1(x) and φ2(x), both approximated by the same
PINN, where the final solution is given by φ̂(x) = min(φ1(x), φ2(x)), since the FEE solution gives the minimum
time for a wavefront to travel from the point sources to any receiver inside the domain. Figure 3a shows the
forward problem solution, which due to the simple velocity field, achieves a R2 score of 0.996 when compared to
the exact solution. Therefore, given only the sources’ positions and the velocity, we can solve the forward problem
with high accuracy. We train the NNs for 50,000 epochs using the ADAM optimizer with a learning rate of 10−3.
At each training epoch, we randomly select 1200 collocation points along with the spatial domain for evaluating
the PDE residual. Figure 3b shows the mean velocity field obtained by generating 500 samples after the training
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process. Even without inserting noise into the synthetic measurements, it is worth trying to quantify uncertainty,
mainly due to the presence of the discontinuity in the ground truth velocity field, which is challenging to capture
and represent. We can see in Fig. 4a the higher values of the standard deviation of the velocity field appears close
to the discontinuity.
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(a) Predicted travel time, φ̂(x). R2 = 0.966
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Figure 3. Solution of the forward problem (a) and the mean solution of the inverse probabilistic problem (b).

We limit the output of the velocity prediction to be 0.0 < v̂(x) ≤ 1.0
0.7 . Consequently, the region in which the

velocity should assume its maximum value ends up with the smallest values of variance, as we can see in Fig. 4a.
That is associated with the fact the predictions tend to collapse into one of the defined bounds. Since the minimum
admissible value is not specified to be equal to 1.0, as in the ground truth velocity field, it is reasonable to expect
that we have considerably higher levels of variance in the regions in which the velocity should be equal to 1.0. As
expected, it is possible to notice that the higher levels of variance are close to the velocity discontinuity, which is a
difficult feature to capture. For a better interpretation of the uncertainty, we show in Fig. 4b the Confidence Index
(CI for short) map [24]. It simply consists of a point-wise normalization of the standard deviation to the interval
[0.0, 1.0], in which the lower values indicate a less reliable prediction, and the higher values indicate a strongly
reliable prediction. Here we can notice the same behavior as in Fig. 4a, where both indicate that the less reliable
region is close to the velocity discontinuity. Thus, the Confidence Index is given by,

CI =
σmax − σx
σmax − σmin

(11)

where σmax and σmin are the maximum and minimum standard deviation values in the whole domain, and σx is
the standard deviation evaluated at the spatial coordinate x.

For monitoring the training process, at each iteration, we choose one random snapshot of the velocity model
and compare it with the ground truth by using the R2 score as the metric, as shown in Fig. 5a. We can see in Fig.
5b the evolution of the loss function. After 20,000 epochs, we achieve reasonably good results, but we still training
until the completion of 50,000 training epochs.

Once the PINN is trained, it is possible to generate an arbitrary number of samples at any spatial coordinates
and quantify the uncertainty using any metric, which could be simple point-wise histograms, as in Figs. 6a and 6b,
or even maps as the Confidence Index as presented before.

5 Conclusions

Our results suggest that the FEE is indeed the best alternative for solving point-source Eikonal problems
using PINNs. By using the same input scheme (source and receiver position) for the PINN as in [13], our solution
scheme becomes a powerful tool for solving multi-shot or multi-source problems. Besides, we achieve for the
forward problem excellent results (R2 = 0.996) with simple, fully connected NNs with a small number of neurons,
differently from the networks in [13], which used a larger number of neurons in its dense blocks. We also easily
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Figure 4. Standard deviation (a) and Confidence Index for the inverse probabilistic problem (b).
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Figure 5. Monitoring PINN training: R2 score (a) and Loss function (b) for the inverse probabilistic problem.
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Figure 6. Uncertainty Quantification: Velocity histograms at chosen locations.

extend the PINNs for solving probabilistic inverse problems efficiently thanks to the implementation of the Dense-
Flipout layers in TensorFlow Probability. We observe in the training that the loss function after 10,000 epochs
is around 0.002 and the R2 > 0.76, indicating a good quality in the results. As a last remark, we choose our
activation function for the direct and probabilistic inverse problems by trial and error, which is a cumbersome task.
Automatic hyperparameter tuning contributes to alleviating this burden, and we plan to explore it shortly.
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Rômulo M. Silva, Alvaro L. G. A. Coutinho

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] Debnath, L., 2012. First-Order Nonlinear Equations and Their Applications, pp. 227–256. Birkhäuser Boston,
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