
A finite strain non-isothermal phase-field model for damage and fracture
in elasto-plastic impact problem

G.A. Haveroth1, A.P.C. Dias2, M.L. Bittencourt2, J.L. Boldrini2

1Department of Applied Mathematics, Institute of Mathematics, Statistics and Scientific Computing, University of
Campinas
Praça Sergio Buarque de Holanda, 651. Cidade Universitária, zip code 13083-859, Campinas-SP, Brazil
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Abstract. This paper presents a thermodynamically consistent non-isothermal phase-field framework to model
the damage and fracture effects in elasto-plastic materials under finite strain. Following Boldrini et al. [1], the
adopted methodology is based on the use of the principle of virtual power, energy balance, and the second law
of thermodynamics in the form of a Clausius-Duhem inequality for entropy. Contact constraints are introduced
conveniently in the weak form of the resulting motion equation. A frictionless impact fracture problem simulation,
disregarding thermal effects, shows that the proposed model can reproduce qualitatively the crack initialization and
subsequent propagation.
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1 Introduction

Understanding damage and fracture phenomena can lead to improved design of components and also improve in-
spection, maintenance, and renewal policies for existing and future infrastructure in several fields. In this concern,
the use of phase-field methodology is a sound alternative to the classical strategies for damage and fracture model-
ing, as evidenced by the number of publications on the subject in recent years [1–7]. This methodology overcomes
the main difficulties associated with the initiation and subsequent crack propagation, especially when they occur
in complex geometries. Moreover, its diffuse approximation of discontinuities avoids the need to remeshing along
the crack propagation [8].

Miehe et al. [2, 9] developed a phase-field variational formulation for crack propagation in brittle elastic
solids. This is the principal study (not the pioneer) concerning phase-field modeling for the description of cracks.
Several numerical examples were performed, showing the potentiality of this methodology. Based on the Miehe’s
methodology, several studies with contributions for this theme were developed [4, 5, 10, 11]. In particular, Boldrini
et al. [1] developed a thermodynamically consistent non-isothermal phase-field model for brittle crack description
based on the principle of virtual power, balance energy, and the second law of thermodynamics. The resulting
model showed generality, recovering the Miehe’s based models by adopting convenient simplifying hypotheses.
Also based on Miehe’s study, Ulmer et al. [12] outlined a phase-field model for ductile fracture description.
Following the previous studies, several enrichments concerning physical hypotheses, degradation functions, and
how these functions affect the free-energies were presented [6, 7, 13].

Although there are many works about damage in impact problems in the literature [14–18], numerical phase-
field models applicable to general cases considering the damage and fracture evolutions in impact problems with
elasto-plastic material remain under development as can be seen in [19, 20]. Franke et al. [19], presented a
variational contact algorithm applied to a phase-field fracture approach for a contact problem considering finite
strain. While Hesch et al. [20] expanded the previous formulation proposing a contact algorithm applied to a
phase-field approach to brittle fracture. Both papers show that phase-field approaches allow for the numerical
simulation of complex fracture problems, as bodies arise in contact and impact situations.

In this study, we present a general thermodynamically consistent non-isothermal phase-field model for evo-
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lution of damage and fracture. This model is written in Lagrangian coordinates and developed for elasto-plastic
materials under hypothesis of finite strain. In addition, we also consider the contact, disregarding friction effects,
by the imposition of classical constraints in the boundary of the bodies.

2 Fundamental laws in Lagrangian Coordinates for the Damage Phase-field Model

Let us consider the usual regularity hypothesis of continuum mechanics and assume a body that at time t = 0
occupies a configuration B0 ⊂ R3 with Lagrangian coordinates p and D0 denotes an arbitrary regular sub-domain
of B0. In this study, we assume that the damage phase-field ϕ = ϕ (p, t) (written in Lagrangian coordinates p) is
a dynamic variable, and its governing equation is obtained from the principle of virtual power (PVP). Moreover,
we adopt the multiplicative decomposition of the deformation gradient F tensor as

F = F eF pF θ, (1)

where F e, F p and F θ are, respectively, the elastic, plastic and thermal deformation gradient [21].
The first physical law to be considered is the conservation of mass. It is expressed by the continuity equation

for the material density ρ0 = ρ0 (p) of the reference configuration as

ρ̇0 = 0. (2)

The dynamic equations are obtained following the same methodology described in Boldrini et al. [1] and
Haveroth et al. [7]. This derivation uses the PVP considering several kinds of forces resulting in the expressions ρ0v̇ = divp (FS) + ρ0f0 inD0

Pn0 = t0 in ∂D0

and

 0 = divp (h0)− b0 in D0

h0 · n0 = th0 in ∂D0

. (3-4)

Herein, S the second Piola-Kirchhoff stress tensor, P = FS is the first Piola-Kirchhorff stress tensor, f0 is the
specific body force vector, n0 is the unitary external normal toD0, the (vectorial) microstress h0, a (scalar) micro-
force b0 and the contact microforce by unit of area th0. Equation (3) is the conventional linear balance equation
associated to the macroscopic equilibrium, while (4) may be considered a microbalance equation associated with
the phase-field [9].

The first principle of the thermodynamics postulates the balance of energy in the system. It can be expressed
by the following local form

ρ0ė0 = −divp (q0) + ρ0r0 +
1

2
S : Ċ + b0ϕ̇+ h0 · ∇pϕ̇, (5)

where e0 is the specific internal density, q0 is the heat flux vector in the Lagrangian configuration, r0 is the specific
heat source/sink density and C = F TF is the right Cauchy-Green strain tensor.

Based in the arguments presented in [1, 22], the second principle of thermodynamics is given in a Clausius-
Duhem differential form by

ρ0η̇0 ≥ −div
(q0

θ

)
+ ρ0

(r0

θ

)
in D0, (6)

where η0 is the specific entropy density, θ > 0 the absolute temperature and r0/θ is the specific entropy production
associated to the heat generation.

In summary, equations (2-6) define the basic governing system of equations of the developed phase-field
model. They give rise to the initial-boundary value problem (IBVP) wherewith we want to find on B0, at time t,
the displacement u and velocity v fields, the phase-field ϕ and the specific internal energy e0 according to

ρ̇0 = 0,

u̇ = v,

ρ0v̇ = divp (FS) + ρ0f0,

0 = divp (h0)− b0 + ρ0a0,

ρ0ė0 = −divp (q0) + ρ0r0 + 1
2S : Ċ + b0ϕ̇+ h0 · ∇pϕ̇,

(7)
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



G.A.Haveroth, A.P.C. Dias, M.L. Bittencourt. J.L. Boldrini

given the body force vector field f0, the specific density of energy a0 and the specific heat source/sink density
r0. We also consider that the entropy inequality (6) must be ensured. The boundary and initial conditions of this
problem are given, respectively, by



u = 0 on ∂BD0
t

u = ū on ∂BDut
Pn0 = t0 on ∂BNσt
h0 · n0 = th0 on ∂BNht

and



ρ = ρ(p)

v = v(p)

v̇ = v̇(p) in B0 at t = 0

ϕ = ϕ(p)

e0 = e0(p)

, (8-9)

where u = 0 and u = ū 6= 0 denotes the prescribed displacements on the Dirichlet boundaries, t and th0 denotes,
respectively, the macro and micro-traction prescribed on the Neumann boundaries. These boundaries are such that
BD0
t ∪ ∂B

Du
t ∪ ∂BNσt = ∂Bt and BD0

t ∩ ∂B
Du
t ∩ ∂BNσt = ∅.

The second Piola-Kirchhoff stress tensor S, the volumetric density of energy b0, the flux of energy h0 and the
heat flux vector field q0 are quantities, whose expressions are constitutive relations obtained by thermodynamical
consistency by satisfying (6). The constitutive relations are depending on the u, v, ϕ and e0 fields. The absolute
temperature θ can be obtained from the specific internal energy e0 and the specific Helmholtz free-energy potential.

3 Constitutive relations

Let us obtain the thermodynamic consistent constitutive relations. By using the balance of energy (5), the entropy
inequality (6) can be expressed in terms of the specific Helmholtz free-energy ψ = e0 − θη0 by

0 ≤ −ρ0

(
ψ̇ + η0θ̇

)
+

1

2
S : Ċ + b0ϕ̇+ h0 · ∇pϕ̇−

1

θ
q0 · ∇pθ. (10)

Also, consider the specific free-energy given according to

ψ = ψ (Γ0) with Γ0 = {θ, ϕ,∇pθ,∇pϕ,C,Cp,α} , (11-12)

where Cp = F pTF p is the plastic right Cauchy-Green strain tensor, and α denotes the hardening variable set.
Based on Boldrini et al. [1], the terms S, b0, h0 and q0 are decomposed in their reversible (non-dissipative) and
irreversible (dissipative) parts. Therefore, its is assumed that

S = S(r) + S(ir), b0 = b
(r)
0 + b

(ir)
0 , h0 = h

(r)
0 + h

(ir)
0 and q0 = q

(r)
0 + q

(ir)
0 , (13-16)

where S(r) and S(ir) are symmetric tensors. These expressions must be found in order that the entropy condition
be valid for any admissible process. They can be obtained by replacing the time derivative of ψ into the entropy
condition ans considering (13-16) as

0 ≤ −ρ0 (η0 + ∂θψ) θ̇ +
(
b
(r)
0 − ρ0∂ϕψ

)
ϕ̇− ρ0∂∇pθψ · ∇pθ̇ −

(
ρ0∂∇pϕ − h

(r)
0

)
· ∇pϕ̇

+

(
1

2
S(r) − ρ0∂Cψ

)
: Ċ − 1

θ
q

(r)
0 · ∇pθ + h

(ir)
0 · ∇pϕ̇+ b

(ir)
0 ϕ̇+

1

2
S(ir) : Ċ

−ρ0∂Cpψ : Ċp − ρ0∂αψ · α̇−
1

θ
q

(ir)
0 · ∇pθ. (17)

The reversible terms of the inequality (17) must be chosen such that for any admissible process there is no
entropy increase, that is,

0 = −ρ0 (η0 + ∂θψ) θ̇ +
(
b
(r)
0 − ρ0∂ϕψ

)
ϕ̇− ρ0∂∇pθψ · ∇pθ̇ −

(
ρ0∂∇pϕ − h

(r)
0

)
· ∇pϕ̇

+

(
1

2
S(r) − ρ0∂Cψ

)
: Ċ − 1

θ
q

(r)
0 · ∇pθ. (18)

This equality can be obtained taking each additive term as zero. Once the quantities θ̇, ϕ̇, ∇pθ̇, ∇pϕ̇, Ċ and ∇pθ
can be given as arbitrary values, their respective coefficients must be zero. Then, in order to (18) holds, we must
have

∂∇pθψ = 0 and η0 = −∂θψ, (19)

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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and the reversible parts of S, b0, h0 and q0 are given, respectively, by

S(r) = 2ρ0∂Cψ, b
(r)
0 = ρ0∂ϕψ, h

(r)
0 = ρ0∂∇pϕψ and q

(r)
0 = 0. (20-23)

Note that due to (19), the arguments of ψ may be restarted as

ψ = ψ
(

Γ̃0

)
with Γ̃0 = {θ, ϕ,∇pϕ,C,Cp,α} . (24)

The remaining terms of (18), the irreversible terms, are given by

0 ≤ h(ir)
0 · ∇pϕ̇+ b

(ir)
0 ϕ̇+

1

2
S(ir) : Ċ − ρ0∂Cpψ : Ċp − ρ0∂αψ · α̇−

1

θ
q

(ir)
0 · ∇pθ. (25)

The positiveness of (25) is imposed by requiring separate positiveness of the non-plastic, and plastic processes:

0 ≤ h
(ir)
0 · ∇pϕ̇+ b

(ir)
0 ϕ̇+

1

2
S(ir) : Ċ − 1

θ
q

(ir)
0 · ∇pθ, (26)

0 ≤ −ρ0∂Cpψ : Ċp − ρ0∂αψ · α̇. (27)

In next sections, the concept of pseudo potential of dissipation is used in order to satisfy the first inequality.
The second one will be satisfied by using the principle of maximum plastic dissipation. Moreover, for the sake
of simplicity, as in Frémond [23, p.27], we assume that the flux term h0 is purely reversible, that is, h(ir)

0 = 0,
obtaining

h0 = h
(r)
0 = ρ0∂∇pϕψ. (28)

3.1 Non-plastic dissipation

In order to satisfy the inequality (26), the concept of non-plastic pseudo-potential of dissipation is employed. It is
given by the functional

ψnd = ψnd

(
ϕ̇, Ċ,∇pθ, Γ̃0

)
, (29)

such that ψnd (·) ≥ 0 for all
{
ϕ̇, Ċ,∇pθ, Γ̃0

}
, ψd

(
0,0,0, Γ̃0

)
= 0 and is continuous and convex with respect

to the variables
{
ϕ̇, Ċ,∇pθ

}
. In particular, when ψnd is differentiable, it is enough to take b(ir)0 , S(ir)/2 and

−q(ir)
0 /θ, as the subdifferential of ψnd (·) respectively with respect to ϕ̇, Ċ and∇pθ. Therefore,

∂ϕ̇ψ
n
d = b

(ir)
0 , ∂Ċψ

n
d =

1

2
S(ir) and ∂∇pθψ

n
d = −1

θ
q(ir). (30-32)

By using the previous results and from (13-16) and (20-23), the final expressions for S, b0 and q0 are,
respectively,

S = 2ρ0∂Cψ + 2∂Ċψ
n
d , b0 = ρ0∂ϕψ + ∂ϕ̇ψ

n
d and q0 = −θ∂∇pθψnd . (33-35)

3.2 Plastic dissipation: plastic flow rule and hardening law

The inequality (27) is satisfied based on the arguments of Simo [24], which considers the principle of maximum
plastic dissipation, and adopts an uncoupled free-energy density function (24) in relation to the internal variables
set α as

ψ = ḡψ̄
(
C,Cp, Γ̂0

)
+ ψ̃

(
α, Γ̂0

)
with Γ̂0 = {θ, ϕ,∇pϕ} . (36)

Here, we assume that the degraded state of the material, described by the scalar function ḡ = g(ϕ), remains
unchanged in the plastic dissipation process.

By applying similar arguments of Simo (details can be found in Haveroth [25, pg.85]), the flow rule and the
KKT loading/unloading conditions are summarized by

4ρ0∂CCp ψ̄ :
1

2
Ċp = −2β̇∂CΦ, Φ ≤ 0, β̇ ≥ 0 and β̇Φ = 0, (37-40)

where β̇ ≥ 0 is the plastic multiplier and Φ is the yield function. Additionally, the hardening law and the hardening
thermodynamical force are given, respectively, by

α̇ = −β̇∂AΦ and A = ρ0∂αψ̃. (41-42)

The yield criterion is determined by the KKT loading/unloading conditions (38-40).
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3.3 General system of equations for the phase-field model

By replacing the previous constitutive relations into the basic governing system of equations (7) and the boundary
conditions (8), enable us to rewrite the IBVP in terms of the specific free-energy potential, pseudo-potential of
dissipation and the yield function.

The IBVP reads: Given the body force vector field f0, the specific density of energy a0 and the specific heat
source/sink density r0 we want to find on B0, at time t, the displacement u and velocity v fields, the phase-field ϕ,
the specific internal energy e0 and the plastic state of the material according to

ρ̇0 = 0,

u̇ = v,

ρ0v̇ = divp (FS) + ρ0f0,

∂ϕ̇ψ
n
d = divp

(
ρ0∂∇pϕψ

)
− ρ0∂ϕψ + ρ0a0,

ρ0ė0 = divp
(
θ∂∇pθψ

n
d

)
+ 1

2S : Ċ + (ρ0∂ϕψ + ∂ϕ̇ψ
n
d ) ϕ̇+ ρ0∂∇pϕψ · ∇pϕ̇+ ρ0r0,

e0 = ψ − θ∂θψ,

S = 2ρ0∂Cψ + 2∂Ċψ
n
d and A = ρ0∂αψ̃,

Φ ≤ 0, β̇ ≥ 0 and β̇Φ = 0,

4ρ0∂CCp ψ̄ : 1
2Ċ

p = −2β̇∂CΦ,

α̇ = −β̇∂AΦ.

(43)

with the boundary conditions

u = 0 on ∂BD0
t

u = ū on ∂BDut
Pn0 = t0 on ∂BNσt
ρ0∂∇pϕψ · n0 = th0 on ∂BNht

(44)

and appropriate initial conditions in B0 at t = 0 for ρ, v, v̇, ϕ, θ, Cp and α. Herein, u = 0 and u = ū 6= 0
denotes the prescribed displacements on the Dirichlet boundaries, as well as t0 and th0 denotes the macro and
micro-traction prescribed on the Neumann boundaries.

The energy equation (43)(v) can be rewritten in terms of the temperature using (43)(vi). In this case, after
some manipulations, we obtain

ρ0θ∂θθψθ̇ = −divp
(
θ∂∇pθψ

n
d

)
− (ρ0θ∂θϕψ + ∂ϕ̇ψ

n
d ) ϕ̇− ρ0θ∂θ∇pϕψ · ∇pϕ̇−

1

2
S : Ċ − ρ0r0

+ρ0 (∂Cψ − θ∂θCψ) : Ċ + ρ0 (∂Cpψ − θ∂θCpψ) : Ċp + ρ0 (∂αψ − θ∂θαψ) · α̇. (45)

This expression is left in terms of ϕ̇, Ċ, Ċp and α̇, which can be obtained of its respective expressions in (43).

4 Specialized model

In this Section we intend to specialize the proposed model for a specific free-energy potential. This potential will
lead to a particular set of equations and, naturally, it can be modified for a better physical description.

4.1 Suitability of notation, thermal and plastic additional hypotheses

In order to present the following arguments related to the plasticity we need to adequate the notation and describe
new hypotheses associated to the model.

We define the volume-preserving part of the gradient of deformation tensor by F̄ = J−
1
3F . This enable us to

define alternative strain measures, for instance, the volume-preserving part of the right (total) Cauchy-Green strain
tensor C̄ = F̄ T F̄ and the left elastic Cauchy-Green strain tensor B̄e = F̄ eF̄ eT . As in Wriggers [21, p.367], we
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consider a purely volumetric thermal deformation, that is, F θ = Jθ
1
3 I , with Jθ given acoording [26, 27] as

Jθ = exp {3αt (θ − θ0)} , (46)

where αt represents the linear thermal expansion coefficient. Moreover, it is adopted the assumption of an isochoric
plastic flow, satisfied by requiring Jp := det(F p) = 1.

From the multiplicative decomposition of F and the previous considerations we have

F = J
1
3

θ F
eF p ⇒ Je = JJ−1

θ . (47)

4.2 Free-energy potential

The free-energy potential used in this specialization is based on [1, 6, 7, 11, 24, 28]. It is given by the sum of the
elastic energy density ψe, the plastic energy density ψp, the energy density related to damage and fatigue ψϕ and
the caloric energy density ψθ as

ρ0ψ = ψe (C,Cp,Γϕ) + ψp (α,Γϕ) + ψϕ (ϕ,∇pϕ,F) + ψθ (θ) with Γϕ = {ϕ, α}. (48)

Following [11, 24, 28], the elastic energy density ψe of the material subject to damage is given according to

ψe (C,Cp,Γϕ) = g(1)
e (Γϕ) E+

0

(
Je, C̄,C

p
)

+ g(2)
e (Γϕ) E−0 (Je) , (49)

with the positive and negative virgin elastic energy densities given, respectively, by

E+
0

(
Je, C̄,C

p
)

=

 U (Je) + W̄
(
C̄,Cp

)
, Je ≥ 1

W̄
(
C̄,Cp

)
, Je < 1

and E−0 (Je) =

 0, Je ≥ 1

U (Je) , Je < 1
, (50-51)

where

U (Je) =
K

2

[
1

2

(
J2
e − 1

)
− ln (Je)

]
and W̄

(
C̄,Cp

)
=
G

2

(
C̄ : Cp−1 − 3

)
. (52-53)

Herein, K and G represents the bulk and shear module, respectively.
The plastic energy density of a damaged material is given by

ψp (α,Γϕ) = gp (Γϕ)H0 (α) , (54)

where α has just one component α, namely, the accumulated plastic strain and the plastic energy density H0 is
assumed to correspond to the Voce hardening law [29] given in terms of the yield stress σy and material parameters
rp and sp, as

H0 (α) = σyα+ rp

[
α+

1

sp
exp (−spα)

]
. (55)

From [1, 7], the energy density of damage and fatigue processes is described by

ψϕ (ϕ,∇pϕ,F) = Gc

(
γ

2

∣∣F−t∇pϕ∣∣2 +
1

γ
H (ϕ)

)
+

1

γ
FHf (ϕ) , (56)

where the non-usual term F−T∇pϕ refers to the pull-back (to the Lagrangian configuration) of the spatial gradient
∇xϕ. As described in [7], this consideration generate additional terms that differs of other phase-field models
already developed.

Lastly, the purely caloric energy density is

ψθ (θ) = −cV θln (θ) , (57)

where ln denotes the natural logarithm and cV > 0 is the volumetric heat capacity of the material.
From (43)(viii) and the free-energy density (48), the second Piola-Kirchhoff stress tensor can be expressed

by the sum of the following terms

S = Sc + Sϕ + Sd, (58)
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where the “conventional” second Piola-Kirchhoff stress tensor is given from (49) as

Sc = 2∂Cψe = g(1)
e (Γϕ)S+

c + g(2)
e (Γϕ)S−c , (59)

with the terms S±c given by

S+
c =


JeU

′ (Je)C
−1 +GJ

− 2
3

e

[
Cp−1 − 1

3

(
C : Cp−1

)
C−1

]
, Je ≥ 1

GJ
− 2

3
e

[
Cp−1 − 1

3

(
C : Cp−1

)
C−1

]
, Je < 1

,

S−c =

 0, Je ≥ 1

JeU
′ (Je)C

−1, Je < 1
,

(60)

and the remaining terms by

Sϕ = 2∂Cψϕ = −Gcγ
(
C−1∇pϕ

)
⊗
(
C−1∇pϕ

)
and Sd = 2∂Ċψ

n
d = 2b̃dĊ. (61-62)

The Kirschhoff stress tensor τc, related to the conventional part of the stress tensor, can be computed by the push-
forward of Sc, that is, FScF T = τc. This measure appear in the return mapping scheme presented by Borden et
al. [6], that fill the gap concerning isochoric plastic flow formulations.

4.3 Non-plastic pseudo-potential of dissipation

We assume the non-plastic pseudo-potential of dissipation for the degraded materials similarly in [7] by

ψnd =
1

2
λ̃
(

Γ̃
)
|ϕ̇|2 +

1

2
b̃d

(
Γ̃
) ∣∣∣Ċ∣∣∣2 +

1

2
gθ (Γϕ) c̃θ

(
Γ̃
)
|∇pθ|2 , (63)

where Γ̃ is the set of variables defined in (24), and the nonnegative coefficients λ̃, b̃d and c̃θ are dependent on the
material (see details in [7]). In particular, we consider λ̃ := (1 − ϕ)/c̃, where c̃ is an additional parameter and
represents the damage rate.

4.4 Elasto-plastic rules

Let us consider that the yielding is determined by the Mises-Huber yield condition. Given in terms of the conven-
tional Kirchhoff stress tensor τc, the yield function is defined by

Φ = Φ̄ (τc,A) = ‖dev(τc)‖ −
√

2

3
A. (64)

For the sake of simplicity, Φ is assumed independent of Γ̃.
From the governing equations given in (43), the free-energy introduced in (48) and the yield function given

in (64), the hardening thermodynamical force and hardening law are given, respectively, by

A = ρ0 ∂αψ = ∂αg
(1)
e E+

0 + ∂αg
(2)
e E−0 + gp∂αH0 + ∂αgpH0 and α̇ = −β̇∂AΦ =

√
2

3
β̇. (65-66)

The plastic flow rule in the Lagrangian configuration is given, by replacing (48) into (37), by

DEV
(
Ċp−1

)
= −2

3
J

2
3

θ β̇C : Cp−1N where N = F−1nF−t and n =
dev(τc)

‖dev(τc)‖
. (67-69)

5 Frictionless contact problem description

Let us assume two distinct bodied that at time t = 0 occupies the configurations Bγ0 ⊂ R3 with Lagrangian
coordinates pγ for γ = 1, 2. Moreover, let us consider φγ their respective mappings to the current configuration,
as illustrated in Figure 1.
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Physically, the contact problem is characterized by the interaction between different parts of bodies during
the mechanical deformation process, where interaction forces between the contact parts arise to prevent the pene-
tration not physically admissible. Mathematically, this means that, at any time t, we must ensure B1

t ∩ B2
t = ∅.

Figure 1. Kinematics of the finite deformation contact problem. Figure 2. Current configuration of the bodies.

In order to develop the main ideas related to the frictionless contact, we assume the boundary ∂Bγt of Bγ
consisting of three parts, namely, ∂Bγt,σ , ∂Bγt,u and ∂Bγt,c subject, respectively, to the action of stresses, displace-
ments and the so-called contact surface, where the bodies B1

t and B2
t are, possibly, in contact. These boundaries

must be such that ∂Bγt,σ ∪ ∂B
γ
t,u ∪ ∂B

γ
t,c = ∂Bγt and ∂Bγt,σ ∩ ∂B

γ
t,u ∩ ∂B

γ
t,c = ∅. Once contact occurs, an im-

penetrability condition must be verified. A generic pair of contacting points pγ ∈ ∂Bγ0,c and its current positions
xγ = φγ(pγ , t) ∈ ∂Bγt,c must be considered in order to express such condition. In addition, let us consider
ξ, η ∈ [−1, 1] local coordinates on the contact boundaries. Such considerations were illustrated in Figure 2.

The solution of a frictionless contact problem can be obtained from the minimization of the total potential
energy subject tom inequality constraints gi(u) of non-penetration between bodies. Mathematically, we can define
the problem as

(P )

{
min Ψtot(u) = Ψs(u) + Ψc(u, φ

γ)

s.t. gN (u) ≥ 0
, (70)

where Ψtot is the total potential energy, Ψs is the potential energy of the mechanical system obtained from the
free-energy potential (Eq. (48)) and Ψc is the potential energy of the contact contribution. The constraints are
given by the normal gap function gN (Fig. 2), that represents the specific non-penetration condition of bodies. The
normal gap function can be defined in terms of the normal vector ν

(
ξ̄
)

at a specific target point x̄1
(
ξ̄
)

as

gN (u) =
[
x2 − x̄1

(
ξ̄
)]
· ν
(
ξ̄
)
. (71)

For gN = 0, a perfect contact occurs. In a penetration condition between bodies, gN > 0, and for a non-penetration
condition, gN < 0.

We can write the variation of the total potential energy for the contact problem using the Principle of Virtual
Work (PVW) as

δΨtot (u) = δΨs (u) + δΨc (u) , (72)

where δΨs is the description of the system virtual work. Further detailed description on the derivation of the weak
form of the BVP, including hypereslasticity behavior, can be found in [30, 31]. The contact virtual work δΠc is
defined as

δΨc (u) =

∫
Γc

t · δgdΓc, (73)

where t is the contact traction vector field [32] and δg the variation of the gap vector. We can rewrite the virtual
work associated to the contact contribution using the Augmented Lagrangian method as

δΨAL =

∫
Γc

tNδgNdA, (74)

where tN is the normal contact stress and δgN is the variation of the normal gap, which are defined as

tN := 〈λN + εNgN 〉 and δgN := δ
[(
x2 − x̄1

(
ξ̄
))
· ν
(
ξ̄
)]
. (75-76)

The scalars λN and εN are, respectively, the normal Lagrange multiplier and the penalty parameter. The
coordinate ξ = (ξ̄) denotes the parameterization of the boundary surface Γc by convective coordinates widely
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used in the literature for solving contact problems [31–34]. In the present work, we use the Uzawa algorithm [35]
to solve the resulting system of equations.

The resultant problem becomes subject to the following KKT constraint equations:

λN ≥ 0, gN ≤ 0 and λNgN = 0. (77-79)

Further details of the contact element used in this work, contact solvers and complete overviews about contact
mechanics can be found in [31, 36–38].

6 Numerical approximation

The semi-implicit/explicit time integration scheme presented in Haveroth et al. [7] is conveniently modified to
solve the motion and damage equations, in this order. For the sake of convenience, in this study we disregard the
temperature effects maintaning a fixed temperature of θ = 298.15 K. In each time step, the resulting linearized
system of equations are solved, using the conjugate gradient method with the diagonal (CGD) pre-conditioner.
The upgraded Lagrangian formulation is employed to perform the numerical integrations, as a manner to deal
more easily the proposed finite strain formulation.

In subsequent sections we describe the discretization of the motion and damage equations by using the finite
element method and the most appropriate time integration procedure. In order to present them, let us consider the
time interval solution [0, T ] in discrete time steps tn with a time step increment ∆t = tn+1−tn for n = 0, 1, 2, . . . .
The variables (·) evaluated at time tn+1 are denoted by (·)n+1. Moreover, the superscript (·)i means that (·) is
evaluated at the i-th iteration of the Newton-Raphson (NR) procedure.

Moreover, we consider a finite element mesh such that

Bn+1 =
nel

A
k=1
Bkn+1, (81)

where Bkn+1 is the domain of the k-th element, or kc-th contact element, at time tn+1, nel is the number of elements
and A represents the assembling procedure. For each k-th element, the approximations of the fields are written as
a linear combination of η local nodal basis function Nj as

uk = Nûk, vk = Nv̂k, v̇k = N ˙̂vk, fk = Nf̂k, ϕk = N̄ ϕ̂k, Fk = N̄ F̂k and θk = N̄ θ̂k,

(82-88)
where the symbol (̂·) represents the nodal values of the field (·) and the matrices N̄ andN are respectively defined
by

N̄ =
[
N1 N2 · · · Nη

]
and N =

N1 0 N2 0 · · · Nη 0

0 N1 0 N2 0 · · · Nη

 . (89-90)

The interpolation of the displacement, velocity, damage and temperature gradients are given in terms of linear
combinations of the shape function global derivatives by

Ek = Bûk, Dk = Bv̂k, ∇ϕk = B̄ϕ̂k and ∇θk = B̄θ̂k, (91-94)

where B̄ andB are given respectively by

B̄ =

N1,x N2,x · · · Nη,x

N1,y N2,y · · · Nη,y

 and B =


N1,x 0 N2,x 0 · · · Nη,x 0

N1,y 0 N2,y 0 · · · Nη,y 0

0 N1,x 0 N2,y · · · 0 Nη,x

0 N1,y 0 N2,x · · · 0 Nη,y

 . (95-96)

The global form of the operators in next sections are indicated without the subscript k, obtained by applying
the assembling procedure for all element contributions.

6.1 Motion equation

The linearization of the motion equation (43)(ii-iii) for a quasi-static situation is already performed in [39, p.496].
Here, we modify it by assuming the updated Lagrangian configuration and a dynamic situation, solved by adopting
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the Newmark method for time discretization [7]. The velocity and acceleration vectors are approximated using the
updated values of the displacement vector un+1 as

vn+1 = χ4 (un+1 − un) + χ5vn + χ6v̇n and v̇n+1 = χ1 (un+1 − un)− χ2vn − χ3v̇n, (97-98)

where χ1, . . . , χ6 are given in terms of the Newmark coefficients γ̃ and β̃ (here γ̃ = 0.5 and β̃ = 0.25) by

χ1 =
1

β̃∆t2
, χ2 =

1

β̃∆t
, χ3 =

1− 2β̃

2β̃
, χ4 =

γ̃

β̃∆t
, χ5 = 1− γ̃

β̃
and χ6 =

(
1− γ̃

2β̃

)
∆t.

(99-104)

As result, we obtain the residue and jacobian for the k-th element given by

rkm =

∫
Bkn
ρ0N

TN dV kn

[
χ1

(
ûkn+1 − ûkn

)
− χ2v̂

k
n − χ3

˙̂vkn

]
+

∫
Bkn
BtF̃ t∆

{
Skn+1

}
dV kn

−
∫
Bkn
ρ0N

TN dV kn f̂
k
n+1 +

∫
∂Bkn,c

tNδgN dΓkccn , (105)

Jkm = χ1

∫
Bkn
ρ0N

TN dV kn +

∫
Bkn

[
BtS̃kn+1B +BtF̃ t∆D

ep
n+1F̃∆B

]
dV kn

+

∫
∂Bkn,c

[∆tNδgN + tN∆δgN ] dΓkccn , (106)

with their global versions evaluated by applying the assemble operator over the element contributions. Herein, the
symbol {(·)} in the above terms means that the tensor (·) is represented using Voigt notation, that is,

{
Skn+1

}
=
[
Sk11,n+1 Sk22,n+1 Sk12,n+1

]t
. (107)

Moreover, the second order tensors S̃kn+1 and F̃∆, described by

S̃kn+1 =


Sk11,n+1 Sk12,n+1 0 0

Sk12,n+1 Sk22,n+1 0 0

0 0 Sk11,n+1 Sk12,n+1

0 0 Sk12,n+1 Sk22,n+1

 and F̃∆ =


F∆,11 0 F∆,21 0

0 F∆,12 0 F∆,22

F∆,12 F∆,11 F∆,22 F∆,21

 ,

are given in terms of the second Piola-Kirschhoff stress tensor Skn+1 and the increment of gradient of deformation
F∆ := Fn+1(Fn)

−1. Lastly, the tensor Dep
n+1 refers to the consistent elasto-plastic tangent modulus evaluated

numerically by using complex derivative as presented in Haveroth [25]. Further details of the integrals on contact
surfaces Γkccn can be found in [31, 38].

It is important to highlight that the second Piola-Kirchhoff stress tensor Skn+1 must be evaluated at configu-
ration Bkn. From (58), this tensor is given by the sum

Skn+1 = Skc,n+1 + Skϕ,n+1 + Skd,n+1. (108)

The conventional stress term Skc,n+1 is obtained by using the return mapping algorithm. From (61-62), freezing the
damage terms due to the adopted semi-implicit strategy and from the push-forward of the gradient term ∇p(·) =
F tn∇xn(·), we have

Skϕ,n+1 = −Gcγ
(
C−1
n+1F

t
n∇xnϕn

)
⊗
(
C−1
n+1F

t
n∇xnϕn

)
. (109)

The remaining term is computed by using a simple finite difference as

Skd,n+1 = 2b̃d
Cn+1 −Cn

∆t
. (110)

Once computed un+1, the acceleration and velocity fields are updated by using the relations (98-97).
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



G.A.Haveroth, A.P.C. Dias, M.L. Bittencourt. J.L. Boldrini

6.2 Damage equation

The trapezoidal time integration rule with appropriate modifications are applied for the damage equation, obtained
by replacing (48) and (63) into (43)(iv). These adjustments contemplate the semi-implicit strategy with the fatigue
variable freezed at past time step and additional numeric considerations (see details in [7]).

By using the finite element approximations and the push-forward of the gradient term ∇p(·) = F tn∇xn(·),
we obtain the descritized residue and jacobian for the k-th element as

rkd =

∫
Bkn

Ψk
dN̄

T dV kn +

∫
Bkn

∆tγGc

2λ̃n
B̄tFn

(
C−1
n+1F

t
nB̄ϕ̂

k
n+1 +C−1

n F tnB̄ϕ̂
k
n

)
dV kn ,

Jkd =

∫
Bkn
dΨk

dN̄
T N̄ dV kn +

∫
Bkn

∆tγGc

2λ̃n
B̄tFnC

−1
n+1F

t
nB̄ dV kn , (111)

where

Ψk
d = N̄ (ϕ̂n+1 − ϕ̂n) +

∆tγgc

2dλ̃n

(
B̄ϕ̂n

)t (
FnC

−1
n+1F

t
n + FnC

−1
n F tn

)
B̄ϕ̂n

+
∆t

2λ̃n

(
∂ϕg

(1)
e,n+1E

+
0,n+1 + ∂ϕg

(2)
e,n+1E

−
0,n+1 + ∂ϕgp,n+1H0,n+1 + ∂ϕg

(1)
e,nE+

0,n

+∂ϕg
(2)
e,nE−0,n + ∂ϕgp,nH0,n

)
+

∆tGc

2λ̃nγ
N̄ (ϕ̂n+1 + ϕ̂n) ,

dΨk
d =

(
1 +

∆tGc

2λ̃nγ

)
+

∆t

2λ̃n

(
∂ϕϕg

(1)
e,n+1E

+
0,n+1 + ∂ϕϕg

(2)
e,n+1E

−
0,n+1 + ∂ϕϕgp,n+1H0,n+1

)
, (112)

and
λ̃n =

(
1− N̄ ϕ̂n

)
/c̃ and dλ̃n =

(
1− N̄ ϕ̂n

)2
/c̃. (113-114)

7 Results

In this section, we present the results obtained for a large deformation frictionless fracture impact problem between
a beam and a wedge as shown in Fig. 3. The geometry and boundary conditions are presented in Fig. 3. The beam
was completely fixed at the left edge and the wedge was constrained in the x direction at the right edge. A vertical
displacement uy = 1.0 [UL] was applied on the bottom of the wedge considering a total integration time T = 1.0 s
with a time step ∆t = 10−3 s. The mesh is composed of linear quadrilateral elements as illustrated in Fig. 4. The
convergence tolerances used for the CGD was 10−8 and for the Newton-Raphson procedures was 10−6. The
penalty parameters used on the Augmented Lagrangian method were εN = 1.0× 108 and ∆εN = 1.0× 108. We
adopted P + 1 Gauss-Legendre integration points for the contact elements that were enough to achieve satisfatory
results. The tolerances for the gap function and contact stress were 10−2. The remaining material and phase-field
parameters used in the simulation are summarized in Table 1.

10 [UL]

1 [UL]

0.1 [UL]

R = 0.0025 [UL]

2.8 [UL] 3 [UL]

1 [UL]

0.05 [UL]

1 [UL]

u [UL]y

Figure 3. Impact problem representation with domain dimensions and initial conditions.
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



A finite strain non-isothermal phase-field model for damage and fracture in elasto-plastic impact problem

Figure 4. Mesh composed of linear quadrilateral elements.

Young modulus [GPa] E 72.0 Yield stress [MPa] σy 368.0

Poisson’s ratio ν 0.33 Plastic parameter [MPa] rp 78.0

Density [kg/m3] ρ0 2810.0 Plastic parameter sp 32.0

Phase layer width [mm] γ 0.5 Viscous dissipation [N.s/m2] b̃d 3.0× 106

Damage rate [m2/N.s] c̃ 0.001 Phase-field parameter ζ 1.0

Griffith fracture energy [N/m] gc 4950.6

Table 1. Parameters used in the simulation.

Figure 5 shows the damage distribution for different time steps of the solution by assuming the degradation
functions gp = 1 and g(1)

e = g
(2)
e = (1− ϕ)

2. We observe that the crack initiates close to the initial notch and
propagates vertically, concerning to the x-axis, characterizing, qualitatively, a brittle fracture in an elasto-plastic
material. The quality of the crack description was limited by the size of the elements in the mesh.

8 Conclusions

In this paper, we proposed a thermodynamically consistent non-isothermal phase-field model to describe the effects
of damage and fracture in elasto-plastic materials under finite strain. The contact constraints were introduced
conveniently in the weak form of the motion equation. We performed a frictionless impact fracture problem
simulation showing crack initialization and subsequent propagation in agreement with expected results.
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Figure 5. Damage distribution for the deformed geometry at t = 0.240 and details at t = 0.001, 0.130, 0.150,
0.180, 0.220 and 0.240 s, respectively.
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