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Abstract. This work aims to quantify the effects of implementation choices, such as type and number of
finite elements, on the modeling composite beams. The study is carried-out on a full-size finite element
model of the structure, which provides a more comprehensive description of the mechanical behavior
of the system when compared to the traditional push-out test. We focus on the influence of contact
conditions, physical and mechanical properties, discretization aspects and boundary conditions on the
correct representation of the force-displacement, local stresses and strains in the section-stud and concrete-
stud interfaces. Based on the observations, the importance of nonlinear relationships is discussed and a
criteria for an adequate numerical implementation of models is proposed.
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1 Introduction

Composite steel-concrete systems are a viable alternative to reinforced concrete and metallic struc-
tures. According to [1] the interaction between concrete and steel elements can significantly affect struc-
tural performance under static or dynamic loading which leads to improved stiffness, strength and duc-
tility. In addition, its ease to built also reduce construction costs.

The main function of the shear connectors is to transfer shear force through the steel-concrete
interface [2]. According to [3] interactions elements capable of resisting the bending moment may also
influence the system.

Therefore, the aim of this study is to propose a numerical model for the analysis composite beams.
Non-linear effects such as plasticity, damage and frictional contact are considered. The implementation
is carried-out in the commercial package Abaqus coupled with Fortran subroutines.

2 Problem description

The composite beam consists of a class 2 composite section as stated in [4] . The structure is simply
supported by a HEA300 symmetric I-profile. The concrete slab has stirrups, positive and negative
longitudinal steel reinforcements made of CA50 steel. It also includes stud bolt connectors made of steel
S355, and support stiffeners made of steel S235. The materials employed in the three main components
of the composite system are detailed in the following.

The slab has a thickness of 100mm and a width of 1400mm. The beam length is 6600mm, the length
between supports being 6000mm. There are only support stiffeners 300mm away from the beam end.
The spacing between the axis of the connectors is 200mm, with the end connectors being 100mm away
from the beam end (distance to the axis). For more details see the model Beam-300 given in [5] and the
work of [6]. The connectors are arranged in two rows with each row of connector 80mm away from the
axis of the connector to the edge of the section and have 19mm shaft diameter, 32mm head diameter and
80mm total height.
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3 Materials and methods

The stress-strain relationship adopted as input for concrete is a function of the mean compressive
strength, fcm, and traction, ftm. With regard to compression for the stress-strain curve of concrete, the
expression of [7], given in Eq. (1) , was adopted. For the ascending branch of the curve, ζ = 0. The
parameters Λ and Ξ used to find ζ, Eq. (3), when it is considered the descending branch of the curve
are given in Eq. (4). According to [8], in the absence of experimental tests, the modulus of elasticity,
Ecm, can be obtained through Eq. (5). In this study, the descending part of the compression curve was
not considered for the global numerical models. This branch was considered only in the submodels in
order to implement the damage in the concrete to the compression and the traction, through the concrete
damaged plasticity model (CDP) available on Abaqus.
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The part of the diagram that corresponds to the tensile behavior of the concrete is, according to
[9], presented in Eq. (8), varying according to Hooke’s law in the range (0, 0) − (εt1, ftm), and after that
point there is a decreasing to (εtu, 0), where εtu chosen for critical damage, Dc = 0.5. The average tensile
strength is given by the expression of [10] through the Eq. (9).

0 ≤ ε ≤ εt1, σ = εEcm, (6)
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)2
, (7)
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[
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3
, fck0 = 10MPa; fctk0,m = 1.4 (9)

According to [11], compression and traction damage to concrete are calculated, respectively, by
Eqs. (10). Compressive damage is calculated only for the descending branch of the stress-strain curve,
analogously the simplification traction damage is calculated by assuming the same stress-strain behavior.

dc = fcm − σc

fcm
, εc ≥ εc1 dt = ftm − σt

ftm
, εt ≥ εt1 (10)

In the CDP model, default values were adopted, except for the viscoplastic regularization coefficient.
A viscoplastic regularization coefficient is chosen wherein the ratio t/µ is sufficiently high to adequately
represent the results providing a savings in computation time due to the decrease of convergence problems.

The parameters used for the implementation of the CDP model are: ψ = 36, ε = 0.1, σb0/σc0 = 1, 16,
Kc = 0.667 e µ = 2e−6. Once, ψ: dilation angle; ε: eccentricity; σb0: biaxial concrete stress (compression);
σc0: uniaxial stress of the concrete (compression); µ: coefficient of viscoplastic regularization e Kc:
constant.

The material behavior was adopted for the true stress-strain curve according to [12] and its definition
is shown in Fig. 1(a). For ”part 4”, Fig. 1(a), the relationship between stresses and strains is given
according to [12] and defined by Eq. 11. The main parameters for constructing the curve are given in
Table 1. The curves used as input for stud and weld are shown in Fig. 1(b). The solder material was
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considered to be of the same type of steel as the head stud, but with a resistance increased by 25%, as
given in [12].

σ = K

{
εp +

[
σy2

K

]( 1
n

)
− εp,y2

}n

, εp ≥ εp,y2 (11)

For the reinforcement material (stirrups and longitudinal bars) the usual CA50 steel, with Young’s
modulus E = 210000MPa, was adopted. The yield stress of this steel is σy = 500MPa, with ratio
σu/σy = 1.08. A strain εu = 0.08 was adopted with respect to the ultimate stress and the trilinear
diagram is shown in Fig. 1(b). For the section, both the web and the flanges have the same material.
The idealized model of the curve used for the construction of the strain-strain curve is given in [13]. The
parameters for the true stress-strain relationships be displayed in the Table 1. The Figure 1 shows the
curve adopted.

Table 1. Material properties for the true stress-strain relationship of steel S355 ([12]) and for the true
stress-strain relationship of steel S235 ([13]).

Properties S355 S355(+25%) S235

E(MPa) 210000 210000 210000

σp(MPa) 311 400 211.7

σy(MPa) 346.9 446.25 236.2

σy2(MPa) 355.9 457.63 243.4

σu(MPa) - - 432.6

εp,y1 0.004 0.004 0.004

εp,y2 0.015 0.015 0.0198

εp,u - - 0.1817

K(MPa) 740 925 -

n 0.166 0.166 -

ρ(ton/mm3) 7.85 · 10−9 7.85 · 10−9 7.85 · 10−9

(a) Idealized true stress-strain curve([12]) (b)

Figure 1. Relation true stress vs. true plastic strain.

4 Implementation

This section presents the steps taken to implement the global numerical model and the sub-model.
The sub-model is used to perform a more detailed analysis in the region of interest, with a more refined
mesh with less computational effort.
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4.1 Global model

The composite beam is modeled using a finite element-based static formulation with user defined
constituitive models. Taking advantage of the symmetric nature of the structure, only a one-quarter of
its geometry is required for the analysis. The loads, boundary conditions, interactions and constraints
are shown in Fig. 2.

(a) Loads and boundary conditions. (b) Interactions and constraints.

Figure 2. Global model, loads, boundary conditions, interactions and constraints.

The geometry is defined such that the Cartesian directions (x, y, z) matched the principal directions
(1, 2, 3). The body weight of the structure is also considered and a gravitational acceleration, g, equal
to −9810mm/s2 is assumed. A vertical prescribed displacement (U2) equal to 90mm is applied to the
reference point (RP) which is kinematic coupled to an area of 50x150mm2 on top of the concrete slab
(loading zone). The remaining degrees of freedom of the RP are fully restrained (U1 = U3 = UR1 =
UR2 = UR3 = 0). Symmetry conditions are applied to the cross-section facet (XY plane) and the side
facet (YZ plane). Restraints denoting a simply supported beam (U1 = U2 = U3 = 0) are also included,
see Fig 2(a).

Tie constraints are applied to the connector-section and the stiffener-section interfaces. A small
sliding surface-to-surface frictional contact interaction (friction coefficient of 0.7 [14]) is defined at the
interface connector-concrete. The penalty method was chosen to enforce the contact constraints. Em-
bedded wire elements are used to represent the reinforcements. The finite element mesh adopted for the
global model is shown in Fig. 3.

Figure 3. Discretization of the global model: Overview of the composite beam (left); and detailed view
of the Profile-Stud-Concrete connection (right).

The stirrups and the longitudinal reinforcements use 2-noded linear truss elements. The decision for
these specific number and types of elements were based in convergence analysis. Hexahedrical elements
were used for concrete, connector, slab and stiffener, in addition to welding (in the case of the sub-model).

4.2 Submodel

Figure 4(a) displays the submodel mesh. In the submodel region there is no shear or flexural re-
inforcement, so only solid elements are used, and the embedded type constraint implemented in the
global model is not required. In Figure 4(b) the boundary conditions of the submodel are shown, where,
Usub, represents the displacements imposed on the submodel due to the numerical response of the re-
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spective global model. These boundary conditions reflect the node-based submodel. The interactions
and constraints are presented in Fig. 4(c). Contact interfaces were used: concrete-sheet, concrete-weld,
concrete-stud. Only the constraint Tie was used to simulate the constraint on the weld-plate and weld-
stud interfaces.

(a) Mesh (b) Boundary (c) Interactions and constraints

Figure 4. Numeric submodel

The number of finite elements for each structural element for the global and local model are presented
in Tables 2 and 3, respectively. The term S2-G presented below is used to differentiate the models in
relation to the discretization of the mesh and whether the analysis is global or local. In this case, ”L”
refers to submodels and ”G” to global analysis models.

Table 2. Number of elements for global models

Instance Size, S2-G Tot. Size, S3-G Tot. Size, S4-G Tot.

Concrete 40 11810 60 6091 80 4531

Section 40 1411 60 715 80 369

Stud 2 9140 3 2592 4 1176

Table 3. Number of elements for the submodels

Instance Size, S2-L Tot. Size, S3-L Tot. Size, S4-L Tot.

Concrete 2 6308 6 1276 8 740

Section 2 1536 6 208 8 128

Stud 1 4128 3 2592 4 568

Weld 1 840 3 192 4 80

5 Results and discussion

This section presents the results for the global models and submodels with linear elements of reduced
integration and full integration. As stated in the previous section, ”Si-La” refer to local models with
reduced integration elements, while ”Si-Lb” refer to local models with full integration elements. In the
case of global models, we have, in a similar way, Si-Ga and Si-Gb.

Table 4 shows the relationship between the times of the simulations, where it is possible to visualize
the computational effort according to the types of elements. Among the global models there is an increase
in the simulation time for models with linear elements and full integration. As for the local numerical
models, partially, an inverse (and unexpected) behavior is noticed, where the greatest time is given in
simulations S2-La and S3-La in relation to their peers, S2-Lb and S3-Lb, respectively . The difference,
between pairs, in percentage also is shown in Table 4.

Compression and tensile damage are shown in Figs. 5(a). There is practically no difference between
models with different mesh sizes for models with reduced integration elements, however between these
and those with full integration there is a relevant difference of the order of 63.4%, as in the case between
S2-La and S2-Lb models.
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Table 4. Time differences between numerical pairs with elements of reduced and total integration.

Model Time (s) Difference of time (%)

S2-La 9553
271.57

S2-Lb 2571

S3-La 1406
42.02

S3-Lb 990

S4-La 251
27.67

S4-Lb 347

S2-Ga 3333
16.63

S2-Gb 3998

S3-Ga 1401
8.85

S3-Gb 1537

S4-Ga 1279
8.64

S4-Gb 1279

The plastic deformation is shown in Fig. 5(b). Different gradient values occur for the parts, that is,
section, stud and weld. The greatest plastic deformation occurs in the weld, justifying the adoption of a
material of higher performance for it, in relation to the welded parts.

(a) Damage (b) Equivalent plastic strain

Figure 5. Outputs for submodels

For the global model, the parameter of interest for concrete was the von Mises equivalent stress,
as shown in Fig. 6(a). A significant difference in this case occurred for the stress values, which were
above the average maximum compression stress adopted (38MPa) for the cases with elements of total
integration.

The plastic deformation in the steel elements of interest are shown in Fig. 6(b), where it is perceived
that the element that deforms the most is the studs in comparison to the node with the highest gradient
of equivalent plastic deformation. The differences between the maximum values between the section and
the stud are, for example, 45.73% in the global model S2-Ga and 64.99% in the S2-Gb.

(a) von Mises stress (b) Equivalent plastic strain

Figure 6. Outputs for global models
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6 Conclusions

In this work, numerical simulations were carried out to evaluate the influence of element types in
the analysis of composite beams. Significant differences were noted in terms of results and computational
cost. It is concluded that the models with lower computational cost can be used more frequently for
analysis in mechanics of solids, in terms of number of elements, with less discretized meshes. The type
of element to be adopted in a numerical simulation in a three-dimensional model must be accompanied
by tests that allow its refinement in order to obtain a detailed analysis of the entire structural set.

The techniques used to implement the global numerical model and submodel were considered ad-
equate in terms of contact, boundary conditions, mode of application of displacements, physical and
geometric properties. The variables of interest analyzed, such as damage, von Mises stress and plastic
strain can be seen as fundamental in the analysis of composite beams.

It is concluded that numerical evaluation methods are fundamental for the study of the mechan-
ical behavior of composite beams of steel and concrete with ordinary materials, contributing to their
understanding and identification of critical points, stress distribution, plastic strain and damage.
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