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Abstract. Damage mechanics is a branch of the inelastic theory, which is concerned with the impact of the growth 

of microvoids or microcracks in solids. From a structural point of view, a solid body loses stiffness as a 

consequence of  damage evolution. This work aims at understanding fracture propagation in quasi-brittle materials, 

considering continuum damage and cohesive crack models. The cohesive zone model and isotropic damage model 

are implemented into the in-house framework GeMA. In the finite element context, modeling of the material 

degradation process is a challenging task due to the occurrence of critical points and convergence problems in the 

global solution. Therefore, robust continuation methods are required to overcome this obstacle. Regularization 

techniques are applied in the isotropic damage models to reduce the pathological sensitivity of the solution to the 

finite element size. Numerical simulations illustrate the ability and limitations of the proposed models to simulate 

fracture propagation. Additionally, various damage criteria and evolution laws proposed by several authors are 

adopted to evaluate the impact of the model on the global behavior. The results indicate that continuum damage 

and cohesive zone modeling are crucial tools to provide realistic responses related to fracture processes.  
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1  Introduction 

The fracture propagation in quasi-brittle materials, such as concrete and rock, is preceded by the development 

of a zone with microcracks (fracture process zone) that is still capable of transmitting forces (Van Mier [1], Wight 

and MacGregor [2]). The coalescence of these microcracks and microvoids leads to the formation of macrocrack, 

characterizing the completely damaged zone, where forces are no longer transmitted. In this sense, several 

constitutive models have been proposed to model this phenomenon. Thereby, damage mechanics is a branch of 

the inelastic theory that studies the impact of the growth of discontinuities in solids. In general, the damage process 

is irreversible and can be associated with creep, fatigue, or plastic deformation. From a structural point of view, 

stiffness loss is an effect of the damage evolution. In 1958, the damage mechanics was initially described by 

Katchanov to explain the fracture process in creeping metals (Lemaitre [3]). Afterwards, Lemaitre [3] presented a 

formalism considering the thermodynamic perspective. Several initiation criteria and damage evolution laws have 

been studied by distinct authors, such as Mazars [4], Kurumatani et al. [5], Oliver et al. [6], and Simo and Ju [9], 

to assess the stiffness degradation process. 

Another constitutive model capable of describing the fracture propagation process is the cohesive zone model. 

This model avoids the stress singularity at the crack tip (Nguyen [10]). Moreover, the cohesive constitutive model 

relates the cohesive tractions on the crack surface to the crack opening. In the finite element method, zero-thickness 

interface elements with a cohesive model are placed between solid elements to describe the nucleation and fracture 

propagation (Mejia et al. [11]). 

This work aims at studying the description of the fracture process using the isotropic damage and cohesive 
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zone models. These constitutive models are implemented into the in-house finite element framework GeMA. Both 

constitutive models are adopted to reproduce fracture propagation in quasi-brittle materials. In the finite element 

context, the global solution of problems involving the material degradation process presents critical points and 

convergence problems. To overcome these obstacles, robust continuation methods are required. For damage 

models, several techniques are usually adopted to reduce the mesh dependence, such as the non-local model (De 

Vree et al. [12]), a combination of a non-local model and a mesh-adaptive technique (De-Pouplana and Oñate [7]), 

and microplane model (Bažant et al. [13] and Caner and Bažant [14]). This work adopts the regularization 

technique based on the characteristic length, calculated according to the area of each finite element, as presented 

by Kurumatani et al. [5]. Also, several damage criteria and laws of evolution proposed by numerous authors are 

adopted in this work to assess the effects on global behavior. 

2  Isotropic damage model 

The fracture initiation and propagation in quasi-brittle materials present a series of factors that hinder its 

modeling due to their heterogeneity, anisotropy, and nonlinear behavior. The isotropic damage model is a simple 

model capable of describing gradual stiffness loss of the material. The damage evolution of this sort of model is 

measured using scalar variables in the interval [0,1]. It is important to emphasize that the damage variable does 

not affect Poisson’s ratio. The behavior of the damaged material is represented by a simple stiffness correction of 

the undamaged material, as expressed in eq. (1): 

� = �1 − ���: 
, �1� 

where � represents the damage variable, � is the constitutive tensor, and � and 
 are the stress and strain tensors, 

respectively.  

In general, the damage loading function � is defined in terms of equivalent strain ��. Furthermore, this function 

is analogous to yield functions according to the plasticity theory. Several damage initiation criteria are proposed 

to compute the equivalent strain. In section 2.1, some damage criteria will be discussed in more detail. 

Furthermore, the state variable � is updated according to the equivalent strain (Oliver et al. [6]): 

� = �� − �. �2� 

After damage initiation, the loading-unloading-reloading process is numerically reproduced by updating the 

damage variable �, as given by eq. (3) (Oliver et al. [6]): 

� = ��� ���, ������ ������ , �3� 

where t represents the current pseudo-time and the damage threshold �� is defined as the equivalent strain value 

for which the material damage starts. 

Finally, the damage evolution law describes the material softening behavior. Distinct evolution laws are 

proposed in the literature, such as linear and exponential laws. In section 2.2, some damage evolution laws will be 

discussed.  

2.1 Damage criteria 

There are several damage initiation criteria to define the equivalent strain for quasi-brittle materials. This work 

adopts the strain norm, Mazars, and the modified von Mises criteria. The strain norm criterion is based on the 

energy norm of the strain tensor normalized with respect to Young’s modulus �. For this criterion, the equivalent 

strain is defined as: 

�� = �
:  : 
� , �4� 

Mazars [4] criterion is computed from the positive principal strains. Thus, this criterion presents better results 

in analyzes, where the hydrostatic strain is more significant than the shear strain (Moreira and Evangelista Junior 

[17]). The equivalent strain, according to Mazars [4], is defined as follows: 
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�� = �"⟨$⟩&
$

 , �5� 

where the subscript ) indicates the i-th strain and 〈∙〉 are the McAuley brackets.  

The modified von Mises criterion, proposed by De Vree et al. [12], is suitable for quasi-brittle, according to 

Kurumatani et al. [5]. Its mathematical definition is given by 

�� = - − 12-�1 − 2.� /0 + 12- �2 - − 11 − 2. /03& + 12-�1 + .�& 4& , �6� 

where . is the Poisson’s ratio, - is the ratio between tensile and compressive strength, /0 is the first strain invariant, 

and 4& is the second invariant of the strain deviatoric tensor. Figure 1 presents a schematic representation of these 

criteria. 

 

 

 

 

 

 

 

 

 

                                          (a)                                          (b)                                         (c) 

Figure 1. Biaxial failure envelope for (a) strain norm, (b) Mazars and (c) modified von Mises criteria 

2.2 Damage evolution law 

This work adopts the linear and exponential damage evolution laws. The linear law in eq. 7 controls the damage 

variable according to the state variable �, the damage threshold �� and the equivalent strain that leads to the fully 

damaged state �678. Pohl et al. [15] presented a procedure to determine the failure strain, which is dependent on 

the finite element size. Thus, meshes with different element sizes have different values of �678 . 

� = 9��� = �678� � − ���678 − �� ≤ 1. �7� 

The exponential damage law proposed by Kurumatani et al. [5], defines the damage evolution in terms of the 

fracture energy, as follows 

� = 9��� = 1 − ��� <�= >− ���?@ABC �� − ���D , �8� 

where BC is the fracture energy, and ?@A  is the characteristic length of the finite element. For quadrilateral finite 

elements, ?@A is the square root of the element area (Kurumatani et al. [5]). 

3  Cohesive zone model 

The cohesive zone model relates the tractions on the fracture surface � = F�G �HI to their relative 

displacement jump (separation) J = FJG JHI (Nguyen [10]). The traction separation law for a linear elastic 

behavior is defined in eq. 9 (Mejia et al. [11]). 

K�L�HM = NOL 00 OHQ KJLJHM , �9� 

where OL and OH are the normal and shear elastic stiffness, respectively. This work adopts a cohesive zone model 

with a linear softening law. This model assumes linear behavior up to the tensile strength, where the damage 
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evolution starts. A quadratic damage initiation criterion is adopted (Mejia et al. [11]). 

2 �L�L�3& + S〈�H〉�H� T& = 1, �10� 

where �L� and �H� represent the shear and normal strength. Figure 2 shows a typical traction-separation curve of a 

cohesive model. The post-critical regime represents the softening behavior that indicates the loss of material 

stiffness. The area under the curve represents the cohesive fracture energy.  

 
Figure 2. The typical response of the cohesive zone model 

Furthermore, the tractions are evaluated using the scalar damage variable: 

K�L
�H

M � N�1 � ��OL 0
0 �1 � ��OH

Q KJL
JH

M . �11� 

4  Numerical examples 

The numerical examples developed in this work are L-shaped panels presented by Pohl et al. [15] and Winkler 

et al. [18] in plane stress condition. The analyzes were performed in GeMA (Geo Modeling Analysis), which is an 

in-house framework for multiphysics and multiscale analysis developed in Tecgraf/PUC-Rio Institute. The finite 

element plugin implemented in GeMA has several continuation methods to overcome the limit points, such as arc 

length control, displacement control, energy dissipation control, and combination methods proposed by Paullo 

Muñoz and Roehl [19]. In this work, the continuation method adopted was the dissipation of energy, presented by 

Gutiérrez [20]. Geometrical linearity is taken into account in all problems. For more details about GeMA, see 

Mendes et al. [21].  

The first example considers the L-shaped panel presented by Pohl et al. [15]. The panel is discretized in two 

different meshes using bilinear quadrilateral elements with four integration points. The first mesh consists of 300 

elements with an element size of 0.50 m (coarse mesh), while the second mesh consists of 7500 elements with 

0.1m element size (refined mesh), as depicted in Fig. 3. The mechanical properties are � � 10 kN/m
2, . = 0 and �� = 0.01. For simulations considering a linear damage law,  �678  is equal to 0.1 for the refined mesh and is equal 

to 0.02 for the coarse mesh.  

 
     (a)                                                b) 

Figure 3. L-shaped panel (a) coarse mesh and (b) fine mesh (Pohl et al. [15]) 

Figure 4 shows the scalar damage variable at the end of the simulation. The red color indicates the completely 
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damaged material, while the blue color represents the undamaged material. Figures 4a and 4c exhibit the numerical 

results obtained for the coarse mesh using the continuum damage and cohesive zone models, respectively. Figures 

4b and 4d present the numerical results obtained for fine mesh using both models. 

‘  

Figure 4. Deformed structure for the continuum damage modeling in (a) and (b), and the cohesive zone modeling 

in (c) and (d) using coarse and fine meshes.  

Figures 5a and 5b present the load-displacement curves obtained for the coarse and fine meshes, respectively, 

and the results obtained by Pohl [15]. The horizontal displacement is evaluated at D2. Note that Fig. 5a presents 

teeth in the softening branch, which occurs by the stiffness degradation of each element. For the fine mesh, these 

teeth are smoother. Figures 5a and 5b also demonstrate that the adopted continuation method can perform the 

analysis with snap-back phenomena. 

 
          (a)                                                                       (b)  

Figure 5. Load-displacement curve for (a) coarse and (b) fine mesh 

The second example considers the experimental results of an L-shaped concrete panel, as depicted in Fig. 6. 

The experimental program is described by Winkler et al. [18]. This example is proposed to investigate the different 

criteria and damage evolution laws. The material properties are � = 25.85 GPa, . = 0.18, �� = 0.0001044487 

and BC = 90.5 N/m. The fracture energy value used in this work was computed by Oliver et al. [16]. For a linear 

damage evolution law, the value of �678 is calculated according to the expression presented by Pohl et al. [15] 

using the characteristic length.  
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Figure 6. Experimental test setup for the L-shaped panel (Winkler et al. [18]) 

Figure 7a compares three experimental load-displacement responses developed by Winkler et al. [18] and 

numerical results using different continuum damage models. Mazars and modified von Mises criteria, as well as 

linear and exponential damage evolution laws, are adopted in this problem. Additionally, a correction process of 

the load-displacement curve is adopted, according to Kitzig and Häussler-Combe [22]. They presented how a 

typical numerical model overestimated the initial branch of this response. The damage constitutive model cannot 

generate this additional stiffness since it does not affect this branch. This observation indicates that a rigid body 

rotation in the panel occurred due to a certain elasticity of the support. 

Notice that the presented responses showed a softening behavior, as observed in the experimental test. 

Moreover, the constitutive model that combines the damage criterion proposed by Mazars [4] and the damage law 

proposed by Kurumatani et al. [5] could predict the peak load of the structure. The damaged region for this model 

is depicted in Fig. 7b. Nevertheless, the numerical softening branches are different compared to the experimental 

results. Additionally, note that the numerical models that used the modified von Mises criterion presented a peak 

load lower than the models that adopted the Mazars criterion. This difference is due to the elastic domain in the 

region with two positive principal stress (considering plane stress condition) being lower in the modified von 

Mises criterion than in the Mazars criterion. 

 
                                                               (a)                                            (b) 

Figure 7. Numerical results: (a) load-displacement curves considering different combinations of damage criteria 

and damage evolution laws and (b) damaged region 

5  Conclusion  

This work presents numerical simulations of fracture propagation using the isotropic damage and cohesive 

zone models. The continuum damage modeling can be performed considering several damage criteria and damage 

evolution laws, whose application depends on the type of engineering problem. Numerical examples demonstrate 

that the cohesive zone and isotropic damage models can describe the initiation and fracture propagation in quasi-

brittle materials. Also, the continuum damage model could adequately describe the global behavior of the structure 
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observed in the experimental test. The combination of the damage criterion proposed by Mazars [4] and the 

exponential damage evolution law proposed by Kurumatani et al. [5] could predict with reasonable accuracy the 

experimental peak load, different from the other damage criteria and law combinations. 
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