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Abstract. This work analyzes the efficiency of the Repeated Richardson Extrapolation (RRE) to reduce the
discretization error (Eh) that results from the numerical resolution of one-dimensional poroelasticity problem. The
Finite Difference Method (FDM) was employed with second-order CDS approximation for spatial variables and
Crank-Nicolson approximation for temporal variables. The three-point Vanka smoother was used in the iterative
process. The multigrid method with W-cycles was used to accelerate the convergence of the iterative process,
which involved highly refined grids. The analyze of the results considered as local variables, the displacement and
pressure in the central point of the domain, based on localized fixed coordinate coinciding with a node point in all
grids considered; and as global variable, the average value of the variable of interest from all node values. It was
verified that employing RRE in the problems analyzed results in a significant reduction in Eh.

Keywords: Repeated Richardson Extrapolation; Porous media; Multigrid.

1 Introduction

One of the greatest challenges faced by researchers in the field of Computational Fluid Dynamics (CFD) is
the level of accuracy of numerical solutions. Although numerical errors cannot be completely eliminated, it is
imperative that they are controlled or minimized in computational numerical simulations. Of all the sources of
numerical errors, the discretization error (Eh) is considered the most significant according to Roy and Obeekampf
[1]. As ways to reduce this error, Richardson and Gaunt [2], Marchi et al. [3] present as alternatives: a)
mesh refinement, which results in an increase in computational cost; b) an increase in the order of accuracy
of the approximations, which leads to an increase in the complexity of the numerical model; and c) the use
of extrapolation techniques, which is considered a post-processing method of easy implementation and low
computational cost. In this context, in the present work we aim to evaluate the efficiency of the Repeated
Richardson Extrapolation method (RRE) when applied to a poroelasticity problem, seeking to minimize Eh and
consequently increase the level of accuracy of the numerical solution.

Poroelasticity equations mathematically model the interaction between the deformation of a porous elastic
material and the fluid flow inside of it. The general three-dimensional theory was formulated by Biot [4] and named
after the author. It is currently known as the Biot consolidation model. The analysis and numerical simulation in
the Biot consolidation model have become more popular and have been discussed in recent works due to its range
of applications, such as in Medicine, Petroleum Engineering, Biomechanics, among other fields of Science and
Engineering, Ehlers and Bluhm [5], Franco et al. [6].

The mathematical model we used in this work is the one-dimensional poroelasticity equation, which is
described in section 2. The equation is discretized by employing the finite difference method using second order
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accuracy approximation, and Dirichlet and Neumann boundary conditions. It was solved by using the three-point
Vanka smoother, double and quadruple precision, up to ten extrapolation levels with RRE, and the sufficient number
of iterations to achieve the rounding error. We analyzed the following variables: a) displacement and pressure in
the center of the domain; and b) the averages of displacements and pressures. The results obtained indicate that
the methodology employed in this work is promising in terms of increasing the accuracy of numerical solutions in
poroelasticity problems.

2 Mathematical and Numerical Models

The mathematical model used in this study was the one-dimensional poroelasticity equation. Considering the
domain space Ω =

(
0, 12
)

we have 
−E

∂2u

∂x2
+
∂p

∂x
= U

∂

∂t

(
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)
−K ∂2p

∂x2
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, (1)

where E is Young’s modulus, K holds information on physical properties related to the porosity and permeability
of the medium and is called hydraulic conductivity, U is the density of the force applied to the body and P is the
force of injection or extraction of the fluid in the porous medium. The components u(x, t) and p(x, t) respectively
represent the displacement and pressure in the spatial direction x. The displacements u are modeled by the first
equation, whereas the second equation corresponds to the pressure p.

As boundary conditions, x = 0 represents free (permeable) drainage with no displacement variation; x = 1
2

represents right boundary with no displacement or pressure variation, defined by

p(0, t) = E
∂u(0, t)

∂x
= u

(
1

2
, t

)
= K

∂p
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1
2 , t
)

∂x
= 0. (2)

Based on the method of manufactured solutions, as in Roy [7], when considering the analytical solution given
by

u(x, t) = cos(πx)e−t and p(x, t) = sin(πx)e−t, (3)

which satisfies the boundary conditions presented in eq. (2), the forcing terms are given by

U = (Eπ + 1)π cos(πx)e−t and P = (1 +Kπ)π sin(πx)e−t. (4)

For the numerical model, the spatial domain is discretized by the Finite Difference Method (FDM),
uniform meshes and Central Difference Scheme (CDS). The temporal approximation and the spatial and temporal
connection are made by using the Crank-Nicolson method. In addition, we used a reformulated version of the
system of equations exposed by Gaspar et al. [8], which presents an additional smoothing term in the equation
corresponding to pressure, making the system more stable without changing its final result. This term is given by

− h2

4(λ+ 2µ)

∂∆p

∂t
, (5)

where the constants λ and µ are Lamé coefficients.
Considering E = λ + 2µ, and adding the smoothing term eq. (5), in eq. (1) corresponding to the pressure,

the discretization for internal points, that is, for i = 2, 3, . . . , N − 1 results in
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where i, i − 1 and i + 1 indicate the spatial discretization, and n and n + 1 respectively indicate the current and
previous time steps. The size of the time step is given by τ and the length of the spatial discretization is given by
h. We adapted these equations for the boundaries i = 1 and i = N . Further details are found in Franco [9].

After the discretizations we obtained systems of equations that were solved by using the three-point Vanka
smoother. This method is part of a class of smoothers that perform block smoothing, which are indicated when the
solutions of the resulting equation systems have saddle points, as presented by Franco et al. [6], John [10]. In this
work, this occurs when K∆p ≈ 0.

2.1 Multigrid Method

The multigrid method was originally proposed by Fedorenko [11], who showed that the speed of convergence
with the use of the multigrid technique is better than that of pure iterative methods (without the use of multigrid),
which are called singlegrid.

The basic principle of the method is to use a set of grids and alternate smoothing at each grid level and
the approximations of these solutions in a coarser grid (with a certain coarsening ratio re) through operators
that transfer information from the fine grid to the following coarser grid (restriction operator), and then transfer
information from the coarse grid to the following finer grid (prolongation operator), thus reducing the entire
spectrum of errors (high and low frequency errors), Briggs et al. [12], Trottenberg et al. [13], Wesseling [14].
The sequence in which the different grids are visited characterizes a multigrid cycle that can be classified as types
V,W,F, and others.

2.2 Repeated Richardson Extrapolation (RRE)

The method known as Richardson Extrapolation (RE) can be employed when we have an approximation
technique that shows a predictive error term, that is, which depends on a real parameter, what happens with h
(spacing between the nodal points - or nodes - of the mesh), and which is represented by means of an analytical
series according to Burden and Faires [15]. Richardson Extrapolation was initially used to combine approximations
in order to generate results with a higher order of accuracy (pA) considering a few specific parameters. As stated by
Oberkampf and Roy [16], this procedure became known as the standard Richardson Extrapolation. Subsequently,
general values for such parameters started to be considered and it became known as the generalized Richardson
Extrapolation.

The RE is considered a post-processing method that can be used a posteriori in the φ(h) solutions obtained
in different Ωh meshes, taking into account the refining ratio (r = hg/hg+1), where the sub-indexes g + 1 and
g respectively represent the fine and coarse meshes. Richardson’s original equation, presented in Richardson and
Gaunt [2], is

φ∞ =
h2gφg+1 − h2g+1φg

h2g − h2g+1

+ E(φ∞), (7)

where φ∞ is the estimated analytical solution, and φg+1 and φg are the numerical solutions in the fine and coarse
grids, respectively. By generalizing the RE to any asymptotic order (p0) and r, we have

φ∞ = φg+1 +
φg+1 − φg
rp0 − 1

, (8)

which will be effective if the numerical solutions φg only have discretization errors, Novak [17].
The RRE consists of the recursive application of RE in order to raise the order of accuracy of the discretization

error (Eh). The recursion process is created based on eq. (8), that is, we consider

φ0(hg) = φ(hg), g = 1, 2, . . . , (9)

φ1(hg+1) = φ0(hg+1) +
φ0(hg+1)− φ0(hg)

rp0 − 1
, g = 1, 2, . . . . (10)

Given the above, considering m as the extrapolation levels, and g indicating the Ωh, meshes, with m and g
being non-null natural numbers, eq. (10) is then represented, as in Marchi et al. [3] by
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φg,m = φg,m−1 +
φg,m−1 − φg−1,m−1

r
p
m−1 − 1

, (11)

where m = 1, 2, . . . and g = m+ 1,m+ 2 . . . .
From a theoretical point of view, eq. (11) can be repeated infinitely, however, for practical applications we

must consider a limit value for g, that is, g = G, where G is a positive integer that corresponds to the number
of meshes adopted. According to Marchi et al. [18], it is assumed that the use of this recursive process eq. (11)
provides a progressive increase in the order of accuracy of Eh.

In order to employ RRE it is necessary to obtain numerical solutions for a given variable of interest in a
collection of different meshes. Its schematic representation is shown in Fig. 1(a). In this work the variables of
interest used are local variables with the location of their coordinates maintained in all meshes considered and
coinciding with a nodal point Fig. 1(b), or still, characterized by a global variable, represented in this work by the
mean pressure value (pm).

m=0 m=1 m=2 · · · m=G-2 m=G-1
φ

1,0
= φ

1

φ
2,0

= φ
2

φ
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· · · · · · · · · . . .
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· · · φ
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φ
G,G−1

(a) Schematic representation of the use of RRE. (b) Variable with the same nodal position in
different meshes.

Figure 1. Schematic representation of the RRE method and types of variables used. Adapted from Martins [19].

Fig. 1(b) shows that φ1, φ2 and φ3 with coordinates a1, a2 and a3 respectively correspond to the numerical
solutions obtained in the meshes Ωh1 (coarse), Ωh2 (fine), and Ωh3 (extra-fine).

3 Numerical Errors

For a given variable of interest, the numerical error (E) is defined as the difference between the exact solution
analytics (Φ) and its numerical solution (φ), Marchi et al. [3], that is,

E(φ) = Φ− φ. (12)

Numerical errors can be caused by several sources, which are presented in Marchi [20] as: truncation errors
(ET ), iteration errors (EI ), rounding errors (Eπ) and programming errors (EPr). When EI , Eπ and EPr are
minimized or even non-existent, ET is then called, as in Ferzinger and Peric [21], a discretization error (Eh). If
Eh is the only source of numerical error, then

Eh = E(φ) = c0h
p0 + c1h

p1 + c2h
p2 + . . . =

∞∑
V=0

cV h
pV , (13)

where the coefficients c0, c1, c2, . . . are real numbers and can be functions of the dependent variable and its
derivatives, but independent of h. The exponents p0, p1, p2, . . . are the true orders ofE(φ) and its set is represented
by pV = {p0, p1, p2, . . .}.

The elements of pV are positive integers that generally follow the relation 1 ≤ p0 < p1 < . . . which
represents an arithmetic progression of reason q = p1 − p0. The first term p0 is called asymptotic order of E(φ)
(or accurary of numerical solution φ).

When h → 0 the eq. (13) is reduced to Eh = c0h
p0 . Considering the bilogarithmic graph of Eh versus h,

we can see that its inclination in relation to the abscissa axis tends to the value of p0. Therefore, the greater the
accuracy value of the solution, the greater the reduction in Eh by refining the mesh.

The values of pV can be obtained a priori, considering the definition of Eh and the use of the Taylor series;
or a posteriori, as described below using eq. (15). The order of theoretical accuracy of the numerical solution
when employing the RRE method, with pV representing an arithmetic progression for m extrapolation levels, is
described in Marchi et al. [3] as:
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pV = p0 +m(p1 − p0), (14)

which is valid for g = [1, G] and m = [0, g − 1]. For an a posteriori analysis, the values of pV may be based on
the calculation of the effective order of Eh, which when generalized for the RRE method is given, as in Marchi
et al. [3] by

(pE)g,m =

log
(
E(φg−1,m)

E(φg,m)

)
log(r)

, (15)

which is valid for g = [2, G] and m = [0, g− 2]. The E values are calculated by eq. (12) and r is the refining ratio
between the meshes. When h → 0, in theory, the value of (pE)g,m should tend to the values of pV indicated by
eq. (14), where m represents the number of extrapolations performed.

4 Numerical Results

The problem analyzed in this work is governed by the system of equations represented by eq.(1) and its
boundary conditions are determined in eq.(2). The numerical simulations were performed in Fortran and Intel®

Parallel Studio XE 2019 compiler. The computer used featured an Intel® CoreTM i7-9700KF processor, 3.60 GHz
CPU and 16 GB of RAM.

To simulate the problem we adopted: final time tf = 1 s; length of the calculation domain L = 1/2;
approximation of time variables using the Crank-Nicolson method; multigrid method with W-cycle; three-point
Vanka smoother and stopping criterion until reaching rounding error with double or quadruple precision. Thus,
the number of significant figures (without extrapolation) is at least 12 and 30, respectively. Therefore, in these
figures, we minimized Eπ in the solutions. The values used for Young’s module and hydraulic conductivity are
respectively E = 104 and K = 10−5, which represent real values, Franco et al. [6].

The calculations were performed in different meshes (Ωh) with coarsening ratio re = 2. The coarsest grid
has N = 5 nodes and the finest grid N = 4097 nodes, which corresponds to 11 grid levels. The variables analyzed
are: 1) displacement and pressure at the central point, that is, uc = u(1/4, 1) and pc = p(1/4, 1) (local variables);
and 2) average value of displacement and pressure, that is, um and pm (global variables).

In this work we only present the results of the variable pm, since the numerical results of the other variables
showed similar behaviors. By comparing the discretization error curves without the use of the RRE method (Eh)
and with its use (Em), we can see in Fig.2 (with double precision, Real∗8, and quadruple precision, Real∗16), that
the use of RRE is efficient in reducing the discretization error.

Figure 2. Discretization error for the variable pm, with and without the use of RRE.

It is also evident that quadruple precision was more significant in reducing Eh than double precision. This
is justified due to Eπ becoming the main source of numerical error, affecting the efficiency of the RRE method,
which in this case occurred after five levels of extrapolation with double precision.

The results presented in Table 1 characterize an example of the effect of RRE on the reduction of Eh, which
were evaluated by calculating the ratio |Eh|/|Em|. We verified that in the mesh with 65 nodes, when applying
four RRE levels, the error was reduced by more than 350 thousand times.
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Table 1. Error reduction in three different meshes, variable pm with quadruple precision.

Mesh (h) 65 nodes 513 nodes 4097 nodes

m to Em 4 7 10

|Eh| 6.734962E-01 1.048402E-02 1.637359E-04

|Em| 1.825800E-06 1.013794E-15 1.681681E-26

|Eh|/|Em| 3.688772E+05 1.034137E+13 9.736442E+21

Table 2 shows the reduction in the number of nodes of a mesh in order to obtain the discretization error in
a same order of magnitude by using the RRE method. For instance, for a given order of magnitude of the error
5.00E-04, with no use of RRE, it is necessary to use a mesh with 4097 nodes, however, by using the RRE method,
it requires only 33 nodes, that is, without RRE, the mesh should have 124 times the number of nodes. That is
evaluated based on the calculation of the ratio between the number of nodes in the meshes Eh and Em. This
provides a reduction in computational effort (less memory and CPU time).

Table 2. Reduction in mesh nodes for fixed errors, variable pm.

E level 5.00E+00 5.00E-02 5.00E-04

Eh mesh 33 nodes 513 nodes 4097 nodes

|Eh| 2.705E+00 1.048E-02 1.637E-04

Em mesh 9 nodes 17 nodes 33 nodes

|Em| 1.783E+00 1.680E-02 3.655E-04

m to Em 1 2 3

Ratio between the number of nodes in Eh and Em 3.66E+00 3.01E+01 1.24E+02

The reduction of Eh for each extrapolation level and their respective orders of accuracy (pV set) are shown
in Fig. 3(a) and 3(b), respectively. The curve indicated by m = 0 corresponds to pm values with no extrapolation.

(a) Eh× h, where m represents the total number of extrapolations. (b) pE × h, where m represents the total number of extrapolations.

Figure 3. Error and order of accuracy × spacing h between the mesh nodes.

As an example, for m = 8, the value of pE → 10 when h → 0, being the highest value found. We can also
note that the pE values presented in Fig. 3(b) for each level of extrapolationm represent an arithmetic progression.
This confirms what was exposed in subsection 3: the order of theoretical accuracy of the numerical solution when
using the RRE method represents an arithmetic progression and can be calculated by eq. (14). The first term in
this progression is p0 = 2 (Fig. 3(b)). This corroborates what is described in Strikwerda [22], Fortuna [23], who
state that by using second order central difference approximation methods (for spatial domain) and Crank-Nicolson
(temporal approximation) the order of accuracy is O(h2, τ2).
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5 Conclusion

In this work, we evaluated the efficiency of the Repeated Richardson Extrapolation method applied to the
local variables (uc and pc) and global variables (um and pm) of a one-dimensional poroelasticity problem, seeking
to minimize Eh and increase the accuracy of the numerical solution.

We observed that: 1) the use of RRE proved to be promising in increasing the accuracy of numerical solutions
in poroelasticity problems; 2) the more levels of extrapolation are used, the greater the accuracy of the numerical
solution; 3) Eπ affects the efficiency of the RRE method when it becomes the main source of error, that is, within
the limit of the precision established for the calculations; 4) in order to obtain the same order of magnitude as
Eh, the use of RRE proved to be highly efficient in reducing the number of nodes in a mesh, thus providing the
reduction of computational effort (memory and CPU time).
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[10] John, V., 1999. A comparison of parallel solvers for the incompressible navier-stokes equations. Computing
and Visualization in Science, vol. 1, pp. 193–200.
[11] Fedorenko, R. P., 1964. On the speed of convergence of an iteration process. USSR Comput. Math. and Math.
Phys., vol. 4, pp. 227–235.
[12] Briggs, W. L., Henson, V. E., & Mccormick, S. F., 2000. A Multigrid Tutorial. Philadelphia: SIAM.
[13] Trottenberg, U., Oosterlee, C., & Schüller, A., 2001. Multigrid. San Diego: Academic Press.
[14] Wesseling, P., 1992. An Introduction to Multigrid Methods. Chichester: John Wiley & Sons.
[15] Burden, R. L. & Faires, J. D., 2008. Análise Numérica. São Paulo: Pioneira Thomson Learnig.
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