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Abstract. Applications of two-phase problems in porous media are common in Geomechanics, Hydrogeology,
Engineering and Biomedicine. There are different formulations when working on two-phase problems, in this
work we have chosen to use the pressure-pressure formulation. The equations system generated is a strongly non-
linear system of coupled partial differential equations. Thus, the modified Picard and L-scheme to perform its
linearization, the Finite Volume Method for the discretization of the equation in space and implicit Euler scheme
for the discretization of the equation in time were used. The systems of linear equations generated were solved
by the lexicographic Gauss-Seidel solver in a coupled way. In this work, we proposed to use multigrid method
with the Correction Scheme and W-cycle, in order to accelerate the convergence of this solver. Based on the tests
performed using an example with a known analytical solution, it was possible to notice the convergence to the
solution with a few iterations and little computational time.
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1 Introduction

Problems with the two-phase flow in porous media are found in Engineering, Geomechanics, Hydrogeology
and Biomedicine applications. For the study of these problems, different mathematical models are generated to
represent them, depending on the pressure, saturation and relative permeability, being subsequently solved by
numerical simulations. Independent of how these models are formulated, coupled differential equations and highly
non-linear systems are generated. Therefore, the challenge is to find robust and efficient methods for the numerical
solution.

Many articles are found in the literature involving two-phase flow in porous media, using different methods
and approaches to variables. A numerical algorithm, based in modified Picard linearization is proposed by Celia
and Binning [[1] for simulation of these problems, considering unsaturated soils and pressure-pressure formulation.
Kvashchuk and Radu [2] presented a new implicit scheme based in IMPES (Implicit Pressure Explicit Saturation),
that obtained a superior performance in relation to the standard IMPES.

Considering the two-phase flow in porous media with dynamic capillarity effects, Karpinski et al. [3] pro-
posed a linearization scheme, called L-scheme, that does not require regularization step, besides not using derivate
calculations like the Picard and Newton method. Proved that the scheme is robust and linearly convergent. That
procedure linearization was also presented by Pop et al. [4]] to solve non-linear elliptical problems.

[liano et al. [S]] applied three techniques, Newton, modified Picard and L-scheme methods, for linearization
of the surfactant transport in porous media. They concluded that monolithic Newton is the only method with
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quadratic convergence, modified Picard and Newton generated ill-conditioned matrices and that solvers based on
L-scheme were the most robust because produce well-conditioned linear systems.

Because this problem is strongly non-linear, some works consisted of manipulating the expressions that in-
terfere in this fact. Li and Horne [6] compared some methods, for example, Purcell and Brooks-Corey methods,
to calculate the relative permeability of the capillary pressure in a consolidated wetting porous media. Being that,
permeability can be satisfactory if a suitable model is chosen for the problem under study.

Most of the literature found has the main focus on the analysis of different linearization methods. But,
thinking about the solver convergence, Franco et al. [7]] used a new approach with the use of space-time multigrid
method for solving poroelasticity equations, obtaining excellent results.

Therefore, in this work, we study a problem involving the flow of two incompressible and immiscible fluids
in rigid porous media. Using pressure-pressure formulation modeling, where the variables of interest are the
pressures of each both phases, thus, relative permeability and saturation were calculated by numerical expressions
that depend on the pressures. Discretizations in time and space were carried out by the Implicit Euler and Finite
Volumes Methods (FVM) (Ferziger et al. [8]), respectively. As we have a non-linear system, so we have chosen to
apply and compare two methods of linearization, modified Picard (Celia and Binning [[1]]) and L-scheme (Karpinski
et al. [3], Pop et al. [4]), and later to solve the linear system, used iterative method, coupled Gauss-Seidel (Gaspar
et al. [9]). To accelerate the convergence of solver, we proposed to use multigrid method (MG) (Briggs et al. [10]).

The rest of the paper is organized as follows. In Section 2] the one-dimensional porous media equations are
introduced together with their linearization and discretization techniques in time and space. Solver and multigrid
method for the equation of porous media is detailed in Section[3] The code verification and results are demonstrated
in Sectiond] Finally, conclusions are drawn in Section [5]

2 Mathematical Model and Discretization

In this section, we present the mathematical model and its discretization, for the two-phase flow in a rigid
porous medium.

2.1 Government equations

The fluids considered were immiscible and incompressible with the flow in a rigid porous medium. For each
« phase of the fluid, the mass equation can be written as:

0 (pab R .
%—Fv-(paqa):lj’w in Qx[0,7T]. (1
where o = w, n represents the fluid phases (w wetting, n non-wetting), 0, = ¢Sy, ¢ is the porosity, S, is the
saturation, p,, is the density, ¢, is the volumetric flux vector and F,, is the source term of phase «. The domain is
Q C Rt and T is the final time. The volumetric flow is given by the generalized Darcy’s Law for the multiphase
case

Go = 2K (VP2 — pag) ()

where A, is the mobility, Ao, = kra/lia> kra = kra(Sa) is the relative permeability, 1., is the viscosity, K is the
intrinsic permeability tensor (see Bastian [11]), p, is the pressure, g is the gravitational acceleration vector.

Substitution of eq.(2)) into eq.(T)), and consider incompressible case and null gravitational acceleration vector,
the equation can be simplified:

00, I,
Ta (K _——
5t Ao V- (K7 pa) - 3)

In addition to these differential equations, we have the auxiliary relations (Bastian and Helmig [[12]): capillary
pressure p. = p, — P, and saturation S, + .S, = 1, s0, 0, + 0, = ¢.

2.2 Discretization

We begin with a implicit Euler time discretization, use the modified Picard linearization (Celia and Binning
[1]) to linearize the equations and consider pressure-pressure formulation (Ataie-Ashtiani and Raeesi-Ardekani
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[L3]). It lets superscripts n and m denote time level and iteration number, respectively. The distance between points

of temporal approximation is 7 = Nlt, where, 7' is final time and NV, is points number in temporal discretization.

Then discretizing the eq. [3] for wetting and non-wetting phases, we get eqs. (@ [3), respectively,

n+1,m+1 n+1l,m+1
n+1,m 9Py —0p _ 0 n+l,m 0 n+1l,m+1\] _ 90 n+l,m 0 (,n+lm
C’w T ox [Kw ox (5pw )] Oz [Kw ox (pw )] (4)
ntl _ 90y
+E,T - e
_ n+1lm 5P2+1’m+1*5p:f,+1’m+1 0 n+lm 0 n+1,m+1 _ 0 n+l,m 0 (. n+lm
Ow T ox [Kn ox (5]7” )} T Oz [Kﬂ ox (pn )] (5)
n+1l,m _pgn
+1 _ 8, "0,
T
where KI'Thbm = K),,, opptlmtl = pptlm+l _ pnilm ang €, = %ipt = —g%’z. But, for L-scheme using

Ly, large enough, in place of C,, thatis Ls > |C,,| (Tlliano et al. [3]]).

Subsequently, space discretization was done using the FVM. For that, our domain will be a segment of lenght
L and considering uniform mesh, Dy, = {(x;);x; = (¢ — 1/2)h,i = 1,..., N}, with N, volume number in space
and h = NLE distance between volumes of the space approximation, given in Fig.

Figure 1. Space discretization

Thus, the system that we should result in each time step is described in eq. (6).

_ | ©)
B An 5p'll) f7l

being that,
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where [K7 0], and [K3Th™], , denote the interblock conductivities of each phase, calculated by arith-
2 2
metic mean.
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3 Solver and Multigrid Method

To solve the system of linear equations that appear in each linearization step, there are direct and iterative
methods. Direct methods are not efficient in cases where matrices are large and sparse (Burden et al. [14]). In this
article, we use the coupled Gauss-Seidel method.

However, these methods present high-frequency error smoothing properties (oscillatory components), while
low-frequency errors are virtually unchanged. Therefore, in the first iterations, the error is reduced quickly and later
very slowly, with a predominance of smooth modes (Briggs et al. [10], Trottenberg et al. [[15]], Oliveira et al. [16]).
So the MG technique is based on solving the problem in several grids, because after the smoothing the oscillatory
modes in a refined grid, these modes are transferred for a coarse-grid, where they become more oscillatory and the
convergence of the iterative method is efficient. That procedure can be repeated up to coarsest or desired grid. For
the transfer process between grids, restriction and prolongation operators are required with their respective pre-
(v1) and post-smoothing (%) numbers.

There are several ways to go through the various involved grids, which we call a cycle. In this work, we solve
the eq. [6] with the MG method, using the W-cycle and null initial estimative. The ratio between the size of the
volumes of the fine grid () and the immediately coarse-grid 2 is defined as the grid coarsening ratio (r). In
this work, we use r = 2 (standard coarsening) (Wesseling [17]]). For the stop criterion we use || R™ ||~ /|| R°||c0 <
TOL e, where R™ is the residual in the iteration m, RY is the residual in the initial guess and TOL )¢ is the
tolerance for the W-cycle.

4 Results

In this work we use the analytical solution of the problem proposed by Illiano [[18] (section 5.1, p.37). In
that work, Illiano [[18]] considers the pressure-saturation formulation of the p—S5,,, where p = ”“’T‘H’". In this case,
we have the analytical solution f(x,t) = p(x,t) = Sy (x,t) = xt(1 — z), whose spatial x temporal domain is
D =10,L] x [0,T],L = T = 1, with initial and boundary conditions f(z,0) = f(0,t) = f(1,t) = 0. As we
have opted for pressure-pressure formulation of the form p,,—p,, we have to make some adaptations to use p,,
and p,, instead of p. For this, using the capillary pressure equation (p. = p, — pw) and p, we have obtained that
pw =D— & and p, = p+ L2, where p.(S,,) = 1 — 252 . Additionally, we use 6, = ¢Sy, thus 6, = ¢/2 — 2p,.
and 6,, = ¢ — 6,,. As a consequence, we have: C, = o = 772#%, for p. # 1.

Using these expresisons we have found the source terms:

1

Fy = =5 pul20(x — D)z + KXyt(—4 + 1t = 6tz + 6ta”)), ™
1

F, = §pn [2¢($ - 1)33 + K)\nt(4 +t—6tx + 6t$2)}' ®)

According to Illiano [[18] data were used to obtain easy calculations, which are presented in test 1 of Table[T}
Table [Tl we also find data from test 2.

Table 1. Properties
Ao A K 0] Pw  Pn

Test 1 (Illiano [18]]) | 1 2 1 1 1 1
Test 2 1 2 1 09 1 1

We implemented the algorithms in the Scilab 6.1.0 language on a computer with an Intel Core i7 2.6 GHz
processor, 8 GB of RAM, and Windows 10 operating system, with 64 bits.

4.1 Code Verification

In order to verify our code, we reproduce the figure 5.1 of Illiano et al. [5], which presents the numerical
and analytical solution obtained for the saturation for the test 1 data of Table [I] for several steps in time. These
generated graphs are presented in Fig. 2] where is possible to see that all of our solutions (different grids size and
in different time steps) coincide with the Illiano’s analytical solutions (Illiano [18]]).
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Figure 2. Analytical and numerical saturation obtained in first step time with different meshes: (a) N, = N; = 20
and (b) N, = N; =40

In order to analyze the MG implementation we made a comparison with Singlegrid (SG) (single grid method).
For the SG and MG, we used the coupled Gauss-Seidel solver. Besides, for MG we used the following transfer
operators between grids: restriction by full weighting and prolongation by linear interpolation (Trottenberg et al.
[[15], Rutz et al. [19]). In this work, we have used the maximum number of levels and data from the Table |Z|, being
that, 11 and v is the pre- and post-smoothing number, respectively, vy the number of smoothing in the coarsest
grid, TOL ¢, the tolerance for the W-cycle and T'O L, tolerance for the linearization.

Table 2. Implementation data

Vl‘yg‘yo‘TOL]\/jg‘ TOLL
5 ‘ 5 ‘ 5 ‘ 1OE75‘10E—8

In Table E| we presented the required total CPU time (t¢pyy) (which takes into account all the time steps and

their respective necessary linearizations) for each method and the speedup (S = %, that is, S represents

how many times the MG is faster than the SG). Here, we opted only for spatial refining, which is already sufficient
to verify the desirable properties of MG concerning SG. Note that S > 1 in all cases, that is, MG is always faster
than SG. Even more, as we refine the grid, S gets bigger and MG gets more efficient.

Table 3. CPU time for MG and SG

N¢ | Ny | tepu -SG | tepu- MG S

16 | 16 24.860 3.630 6.848

16 | 32 175.394 10.013 17.516
16 | 64 1310.780 27.618 47.460
16 | 128 | 9892.466 62.690 157.799

We performed a geometrical adjustment of the type tcpy = ¢(IN; )P to analyze the performace of MG, where
c is a constant relative to the method and p represents the order of the algorithm. Considering the first time step and
the first linearization in different loops, N, = 4, 8,16, 32,64, 128,256,512 and 1024, we obtained ¢ = 0.0127
and p = 1.1103 = 1, according to the literature (Trottenberg et al. [15]).

4.2 Results in a specific porous medium

In order to obtain the following results, we performed several simulations, comparing the linearization meth-
ods, modified Picard and L-scheme, with Ls(t) = maxz(|Cy|). The data used were those in the Table |1} others
data in the Table |Z| and maximum number of linearization iterations, itmaxy, = 500.
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Table E| shows itmey,, arithmetic mean linearization iterations and itme s, arithmetic mean of MG cycles.
Thus, we can see that the number of iterations in MG is always a small number, concerning linearization methods.
We also realized that for this specific problem, modified Picard needs fewer iterations that the L-scheme, becoming
the most efficient.

Table 4. Modified Picard and L-scheme with Multigrid

Modified Picard L-scheme

N = Ny Test 1 Test 2 Test 1 Test 2

itmer,  ttypag | itmer  itype | ttmer  ttyag | itmern  itva
5.25 1.50 5.25 1.50 16.25 1.12 16.00 1.13

8 4.63 2.50 4.63 2.50 34.13 1.12 33.75 1.12
16 4.31 2.50 4.31 2.50 65.19 1.06 64.69 1.06
32 3.75 2.67 3.72 2.67 | 117.66 1.03 | 117.00 1.03
64 3.22 2.67 3.22 2.67 | 228.94 1.02 | 24420 1.02

Figure [3] presents the infinity norm of the difference between the analytical and numerical solution of p,
versus N, = N; = 4 up to 64 for linearization schemes studied, the results obtained show that, regardless of the
linearization scheme used, the errors were essentially the same and decrease with the grid refinement.

Z.OE-Z , : T T T T T T T T T v T T
Modified Picard
% pTE
1.5E-2 - o |
| —v—p, T2
| +pn-T2
__ 1.0E-2 o |
. —0—p,-TI
E p,TI
5.0E-3 4 o |
\ - p T2
N\
N\ S
N —— .
| | | | | ' I l I i T T T T
0 10 20 30 40 ” ; h

Ny=N;

Figure 3. Infinity norm of the numerical error vs. N, = N; for Tests 1 and 2, with modified Picard and L-scheme

5 Conclusions

In this work, we have analyzed two linearization methods, together with MG, for a two-phase flow problem
in a rigid porous media. Initially, we carried out some tests to verify our code, compared the numerical with
analytical solutions, then analyzed the speedup of MG in relation to SG, where we obtained good results. With
that, we were able to generate some results and to realize the use of the linearization methods, modified Picard
and L-scheme, with the MG method, generated good results, because the numbers of iterations necessary for both
linearization and MG, were low numbers. The numerical error performed well because as we refined the grid, the
error decreased. Therefore, we can conclude that the combination we have used in this article is efficient. Now,
among the two linearization methods studied, the modified Picard with MG method was the only which presented
the best performance to the problem studied.
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