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Abstract. This study presents a numerical coupling formulation for the mechanical modelling of reinforced three-
dimensional (3D) structural systems. This formulation is based on the Boundary Element Method (BEM) for the
mechanical analysis of 3D domains with Lagrangian approximation. In this coupling, the material matrix (solid
3D domain) is represented by the usual 3D BEM formulation with Kelvin’s fundamental solutions for isotropic
linear-elastic materials. Numerical integration and singularity subtraction are applied herein. A one-dimensional
approach of the BEM (1DBEM) represents the embedded fibre-reinforcements, which enforce axial mechanical
solicitation. The 1DBEM is based on the axial fundamental solution for elastic 1D domains, which can be easily
found in the literature. The interaction between the matrix and reinforcements is described by an adherence force
over the reinforcements’ line, which is interpolated by high-order Lagrangian functions. One considers no relative
displacements (perfect bonding). The adherence force is accounted as a body force into the 3D BEM formula-
tion. These aspects characterise the proposed 1DBEM/BEM coupling as an alternative to the usual FEM/BEM
technique, which has been widely applied in the literature. The authors have previously demonstrated in Ro-
drigues Neto and Leonel [1] that the 1DBEM/BEM coupling exhibits superior results when compared against
the usual FEM/BEM approach in 2D applications. This work presents the extension of this formulation for 3D
analyses. The proposed modelling is applied herein in the mechanical analysis of complex 3D applications. The
achieved results are compared against experimental responses available in the literature. The proposed formulation
led to accurate and stable results.
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1 Introduction

The coupling of reinforced materials and components enables the design of efficient structural systems, in
which high stiffness and low weight are achieved. These structural systems compositions have been progressively
increased in several designs recently. With that, its accurate mechanical modelling becomes indispensable for nu-
merous engineering areas. In this regard, the coupling of dissimilar numerical methods is an interesting approach,
in which the FEM/BEM (Finite Element Method/Boundary Element Method) coupling proposed by Zienkiewicz
et al. [2] stands out. The BEM represents the solid matrix and 1D finite elements model the reinforcing fibres in
this coupling technique. Rodrigues Neto and Leonel [1] proposed an alternative coupling formulation based only
in BEM approaches, named 1DBEM/BEM, for 2D analyses. This scheme led to accurate and superior performance
in comparison with classical numerical schemes.

This study presents extension of the 1DBEM/BEM coupling formulation for 3D analyses. 3D BEM singular
formulation is applied herein to describe the solid matrix mechanical behaviour, accounting for Lagrangian approx-
imation. Whereas 1DBEM elements in space model the embedded fibres. A particular integration scheme for the
reinforcement elements is described, in order to make the kinematic assumptions from 3D BEM and 1DBEM com-
patible. A numerical application demonstrates the accuracy and robustness of the proposed formulation. Random
fibres are numerically modelled, considering experimental reference results available.
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2 1DBEM/BEM coupling formulation

2.1 3D BEM singular formulation

The BEM displacements integral equation represents the solid (Ω) mechanical behaviour. This equation can
be obtained through the weighted residual technique, as presented by Brebbia [3], and it is written as follows:

cij(x
s)uj(x

s) +

∫
Γ

T ∗
ijuj(x

f )dΓ =

∫
Γ

U∗
ijpj(x

f )dΓ +

∫
Ω

U∗
kibidΩ (1)

in which ui and pi represent displacements and tractions at the boundary, respectively. Γ is the boundary of Ω.
cij is the free term, which is equal to the Kronecker delta (δij) for internal points and 0.5δij for points at smooth
boundaries. U∗

ij and T ∗
ij are the Kelvin’s fundamental solutions for displacements and tractions, respectively, which

can be found in Brebbia and Dominguez [4].
The BEM solves Eq. 1 in approximate form. Then, the geometry and mechanical fields are approximated

by Lagrangian isoparametric elements positioned at the boundary (Γ). Quadrilateral linear elements (4 nodes)
are implemented in this work. Besides, non-smooth geometries and discontinuous boundary conditions can be
handled through discontinuous and semi-continuous boundary elements. Equation. 1 must be evaluated for all
collocation points (source points) to represent the solid’s mechanical behaviour. Because of the singular nature
of the fundamental solutions, singularity subtraction technique is applied herein, as presented in Guiggiani et al.
[5]. Otherwise, the regular kernels are numerically integrated by Gauss-Legendre scheme. Hence, Eq. 1 can be
algebraically written as follows:

Hu = Gp +

∫
Ω

U∗
kibidΩ (2)

where the matrices H and G contain, respectively, the integration of kernels T ∗
ij and U∗

ij along Γ. The domain
term has not been treated so far, thus it cannot be written in a algebraic form. This term will be numerically treated
in the coupling formulation section.

Equation 1 can also be used to represent internal points’ displacements. This expression is algebraically
written as follows:

ui + Hu = Gp +

∫
Ω

U∗
kibidΩ (3)

where ui is the vector of displacements of the internal point i.

2.2 1DBEM in space: reinforcements modelling

The 1DBEM displacements integral equation can also be obtained through the weighted residual technique
applied for 1D domains (x̄), as described in Rodrigues Neto and Leonel [1], and it is written as follows:

ui −N∗
i1u1 +N∗

inun = −u∗i1N1 + u∗inNn +

∫ L

0

φj(x̄)u∗ix̄ dx̄ pj (4)

in which subscripts 1 and n represent the 1D domain endpoints. ui andNi are, respectively, the axial displacement
and internal force at the i point. φj are the Lagrangian functions used for the distribuited load approximation over
the domain x̄, using its nodal values pi. u∗ij and N∗

ij are the fundamental solutions for axial displacements and
internal forces, respectively, which can be found in Banerjee and Butterfield [6], Antes [7].

The integral formulation (Eq. 4) requires the discretisation of the structural boundaries into parametric el-
ements. One notices that the boundary is composed only of the 1D element endpoints, i.e., i = 1 and i = n.
Any other value for i leads to an internal point equation. However, internal points are accounted in the 1DBEM
algebraic system, to improve the accuracy of the distributed load representation. Hence, the 1DBEM formula-
tion enables high-order isoparametric elements. Thus, after applying the element’s approximations, Eq. 4 can be
algebraically written as follows:

H̄u = Ḡn + ¯̄Gp (5)

where H̄ and Ḡ contain the values of the fundamental solutionsN∗
sf and u∗sf , respectively, applied in the boundary

points. u, p and n vectors contain, respectively, the nodal values of axial displacement, nodal values of distributed
force and concentrated loads. This expression is so far valid for the local coordinate system. The following global
expression can be written by applying axial rotation, as described in Kassimali [8], and considering n = 0:
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KFuF = GFpF (6)

in which uF and pF vectors contain the values of u and p in the global coordinate system.

2.3 Algebraic representation of the coupling formulation

Consider the reinforcements completely embedded into the solid Ω and positioned along the line Γ̄, as il-
lustrated in Fig. 1(a). The coupling scheme accounts for the mechanical interaction among reinforcements and
domain, which is represented by the adherence force as illustrated in Fig. 1(b).

(a) (b)

Figure 1. Scheme of domain/reinforcement coupling technique.

The adherence force is modelled as one-dimensional distributed load along the reinforcement’s line Γ̄. How-
ever, one-dimensional loads applied in a three dimensional domain lead to divergent singular values in the funda-
mental solutions, i.e., which cannot be regularised. Thus, a matching approximation is required, which is similar to
the “special element” proposed for FEM/BEM couplings in Coda et al. [9]. The adherence force in Ω is assumed
to be applied over a two-dimensional surface, which represents the external surface area of the reinforcements.
A cylindrical shell of radius RF is adopted herein. Considering the reinforcements as thin elements, i.e., with a
length higher than RF , one can writes the following simplification:

pD = 2πRFQi (7)

where Qi is the value of the distribuited force over the cylindrical shell, assumed as constant along the angular
direction θ.

Thus, the integration of the adherence force over the reinforcements elements can be accounted in the domain
term of Eq. 1 and numerically evaluated as follows:∫

Γ̄

U∗
ij(pD)jdΓ =

np1∑
g1=1

[
np2∑
g2=1

[
Uij
(
xf (ξg1 , ξg2),xs

)
|jac2(ξg2)|ωg2

]
|jac1(ξg1)|ωg1φm(ξg1)

]
(pD)j
2πRF

(8)

where g1 and g2 represent the numerical integrations used for the axial coordinate (x̄) and the angular coordinate
(θ), respectively. ξi, ωgi and npi are the dimensionless coordinates, weight values and total number of integra-
tion points of the numerical integration i, respectively. The modulus of the Jacobian vector (jaci(ξgi)) of each
integration is determined as follows:
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|jac1(ξg1)| =
√(

xb1,ξ(ξg1)
)2

+
(
xb2,ξ(ξg1)

)2

+
(
xb3,ξ(ξg1)

)2

(9a)

|jac2(ξg2)| = πRF (9b)

where xbi are the coordinates of the xb(ξg2) point, which is the projection of the field point xf along the axial
axis x̄. This axis is coincident with the reinforcements line Γ̄. The numerical integration mapping over the axial
direction defines the position of the xb(ξg2) point. Likewise, the numerical integration mapping over the angular
direction defines the value of θ(ξg2). Thus, the field point is defined as a function of the dimensionless coordinates
as follows:

xf = xb(ξg1) +
RF√

cos2(α1) + cos2(α2)


− cos(α2) cos (θ(ξg2))− cos(α1) cos(α3) sin (θ(ξg2))

cos(α1) cos (θ(ξg2))− cos(α2) cos(α3) sin (θ(ξg2))[
cos2(α1) + cos2(α2)

]
sin (θ(ξg2))

 (10)

in which αi are the coordinates between the axis x̄ and the global axis xi at the point xb.
Figure 2 illustrates the integration over a reinforcement element considering a source point positioned at Γ̄,

considering np2 = 4 and a fixed coordinate ξg1 .

x1
x2

x3

Figure 2. Integration scheme over a reinforcement element, considering 4 integration points over the angular
coordinate and a fixed axial coordinate.

Therefore, the adherence force can be properly accounted as a body force into the BEM formulation through
Eq. 8. Hence, the BEM integral equation for boundary points (Eq. 2) can be rewritten as follows:

HCCuC = GCCpC + GCFpD (11)

where the term GCFpD is the particular form of the domain term obtained by applying Eq. 8. The subscripts C
and F indicate boundary and fibre, respectively. The subscript D indicates the internal point of Ω coincident with
a fibre point. In the above equation, a matrix HXY or GXY result from source point at X and field point at Y.

The BEM integral equation for internal points (Eq. 3) can also be rewritten herein. This equation must be
applied for internal points coincident with the reinforcements nodes, i.e., ui = uD. Thus:

uD = GFCpC −HFCuC + GFFpD (12)

The proposed model assumes perfect bond conditions among reinforcements and domain. Then, the compat-
ibility of displacements and equilibrium of forces are enforced among reinforcements and domain as follows:

uF = uD and pF = pD (13)

The resulting algebraic system of equations is then obtained by coupling Eq. 11, Eq. 12 and Eq. 5. In
addition, the application of the compatibility relations from Eq. 13 leads to:

HCC 0 −GCF

HFC I −GFF

0 KF GF




uC

uD

pD

 =


GCC

GFC

0

 {pC} (14)
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where I is the identity matrix. The last equation is solved by enforcing the boundary conditions, as usual in BEM.
The final algebraic system is as follows:

ACC 0 −GCF

BFC I −GFF

0 KF GF




xC

uD

pD

 =


ĀCC

B̄FC

0

 {p̃C} (15)

in which the matrices ACC, BFC, ĀCC and B̄FC result from the columns change procedure. p̃C and xC are the
known and unknown values at the boundary, respectively.

3 Numerical application

The numerical application handles the mechanical analysis of a concrete specimen reinforced by short fibres,
which are pseudo-randomly distributed within the concrete. The stiffening effect of different fibre volume is
measured through the equivalent longitudinal elastic modulus (Eef ). An uniaxial stress scenario is simulated for
the experimental compression test, as illustrated in Fig. 3(a). This numerical model consists of a 20 mm diameter
cylinder with 20 mm length. The following physical properties are considered: Young’s modulus EM = 39.6 GPa
and Poisson ratio ν = 0.2 for the concrete. The fibres have length of 13 mm, radius equals 0.1 mm and Young’s
modulus Ef = 220 GPa. The experimental test scheme is illustrated in Fig. 3(b) and Krahl et al. [10] presents
experimental results, which are used herein as reference.

x1
x2

x3

(a)

93 

 

 

 
Figure 63 – Compression test set-up 

 

Figure 64 presents a more detailed image of the clip gages. Two points of each clip 

are fixed at the sample with the distance of 50 mm. One of them is the end of a flexible steel 

beam where strain gauges are glued to determine the strain correspondent to the gauge 

length.  

 
Figure 64 – Details of the clip gage 

The displacement applied had the speed of 0.005 mm/s. For gauge length of the 

LVDT, the strain rate 5×10-5 s-1. The initial inclination of the stress-strain curves obtained 

from clip and LVDT are different because the LVDT measurements account for 

accommodations between the machine plates and specimen. Equation (44) enables to correct 

such effect, (OSORIO; BAIRÁN; MARÍ, 2013), 

 
1 1, 1

clip LVDT

LVDT

clip LVDT

E E

E E
  


   (44) 

Where ε1, LVDT is the average axial strain measured by the LVDTs, σ1 is the axial 

stress, Eclip and ELVDT are the modulus of elasticity obtained from the clip and LVDTs 

(b)

Figure 3. Numerical application of the elastic coupling: numerical model (a) an experimental scheme (b) for an
uniaxial compression test. Krahl et al. [11], adapted.

The equivalent longitudinal elastic modulus can be determined as follows:

Eef =
L

ū1πr2

∫
Γs

t1 (Γ) dΓ (16)

where L is the cylinder, r is the cylinder radius (in the plane x2 x3). Γs is the cylinder face where ū is applied and
t1 (Γ) are the traction results at the boundary.

The boundary mesh is composed of 4250 linear quadrilateral elements and 4442 collocation points. Figure
4 illustrates this mesh. Each short fibre is discretised into 5 quadratic 1DBEM elements. Previous analyses have
shown mesh convergence regarding displacements over the boundary and Eef results.

Figure 4. Boundary mesh utilised for the cylinder representation.

Steel-fibre reinforced concrete specimens were used in the experimental results of Krahl et al. [10]. Three
different fibre’s content in volume were analysed: 0%, 1% and 2%. One disregards the physical nonlinearities
because the linear-elastic limit in compression was respected.
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Four different fibre’s pseudo-random scenarios are assumed for the numerical analysis, which aims the accu-
rate representation of the fibres spacial position:

• “BEMrand” assumes fibre position and fibre inclination governed by uniform statistical distribution. This
scenario leads to random distributed fibres;

• “BEMalig” assumes fibre position governed by uniform statistical distribution and inclination aligned with
the x1 axis;

• “BEMtransv” assumes fibre position governed by uniform statistical distribution and inclination aligned with
x2 axis;

• “BEMnormal” assumes fibre position governed by uniform statistical distribution and inclination governed by
Gaussian bi-variate statistical distribution with standard deviations equal to 0.23 rad. This scenario leads to
pseudo-random fibres with a preferential direction.

The standard deviations value of the Fourth scenario were previously calibrated to best match the experi-
mental results. Figure 5 illustrates the results obtained with the four above-mentioned scenarios in addition to the
experimental responses. Such comparison has been performed through the relation between the equivalent elastic
modulus (Eef ) and the matrix Young’s modulus (EM ). All results are presented as the tendency line (from a linear
regression) of the multiple values obtained for each point, besides the actual results of some scenarios (“val.”). Fig-
ure 5(a) considers the random numerical scenarios (BEMrand, BEMalig and BEMtransv), in addition to the maximum
(“max”) and minimum (“min”) values of the experimental results. Figure 5(b) illustrates the calibrated numerical
scenario BEMnormal.
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Figure 5. Stiffness variation as a function of the fibre volume using different distributions of fibres in the numerical
model: random distributions (a) and calibrated distribution (b)

Figure 5 demonstrates the good agreement among the numerical responses and the reference. Figure 5(a)
suggests that the experimental mean responses are between the BEMrand and BEMalig results. Besides, 5(b) illus-
trates that the BEMnormal scenario was able to accurately match the reference. Thus, a possible uncertainty about
the fibres randomness are observed in the experimental results, which have been often recognised in the literature
as mentioned by Gettu et al. [12], Yoo et al. [13].

Figure 6 illustrates the displacements along x1 direction over the reinforcement’s mesh. BEMnormal model
with Vf = 1% is illustrated in Fig. 6(a) and BEMrand with Vf = 2%, in Fig. 6(b). A tension scenario (ūD = 1
mm) was considered herein. The pseudo-random spacial fibres position distribution BEMnormal is observed in Fig.
6(a). Furthermore, all displacements behaviour in both figures are within the expected range, due to the prescribed
displacement applied.

4 Conclusions

The 1DBEM/BEM coupled formulation for the mechanical analysis of 3D reinforced structures and materials
was successfully presented in this study. The numerical application demonstrate its robustness and accuracy in
modelling complex 3D engineering problems, such as the random-distribuited short fibres. The obtained results
were coherent and in agreement with the experimental reference. The 3D aspect of the presented formulation
is highlighted herein to properly represent any fibres distribution and inclination in space. The efficiency of the
formulation was also illustrated, regarding the reduced number of degrees of freedom to discretise both specimen
boundary and short fibres. Therefore, the proposed formulation is robust, stable and has large potential for solving
complex real-life structural problems.
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(a) (b)

Figure 6. Displacement in x1 direction over the reinforcements using: normal distributed fibres BEMnormal in (a)
and random distributed fibres BEMrand in (b)
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