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Abstract. This study presents a numerical coupling formulation for the bond-slip modelling of 3D reinforced do-
mains. This formulation is based on the Lagrangian 3D Boundary Element Method (BEM) and the 1DBEM/BEM
coupling. In this technique, the material matrix (solid 3D domain) is represented by the 3D BEM displacements
integral equation. Numerical integration and singularity subtraction are implemented for plane elements. A one-
dimensional approach of the BEM (1DBEM) represents the embedded reinforcing bars. The 1DBEM is based
on the axial fundamental solution for elastic 1D domains, which can be easily found in the literature. The inter-
action between the matrix and reinforcements is described by an adherence force over the reinforcements’ line,
which is interpolated by high-order polynomial functions. The adherence force is accounted as a body force into
the 3D BEM formulation. The bond-slip effects are accounted by considering relative displacements between
reinforcement and matrix. An adherence law represents the relation between slip and adherence force. Thus,
Newton-Raphson solution technique can be utilised to solve the nonlinear problem. The boundary formulation is
applied herein to represent the pullout test, which is essentially 3D. In this regard, a connection element is used
to properly enforce the prescribed displacement directly at the reinforcing bar in a region outside the 3D solid.
The numerical results of the pullout test model show excellent agreement with experimental data. Therefore, the
proposed formulation can be considered stable, accurate and robust.
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1 Introduction

The use of reinforced materials and structures in complex engineering components has grown considerably
recently. With that, one can achieve efficient designs with these compositions, i.e., high high stiffness and low
weight. Hence, its accurate mechanical modelling becomes absolutely necessary. In this context, the coupling of
dissimilar numerical methods is widely applied and the FEM/BEM (Finite Element Method/Boundary Element
Method) coupling proposed by Zienkiewicz et al. [1] stands out. Rodrigues Neto and Leonel [2] proposed an
alternative coupling based only in BEM formulations, named 1DBEM/BEM, for 2D analyses. In this coupling
technique, the 3D BEM represents the solid matrix and a 1D approach of the BEM model the reinforcing fibres.
Besides, a nonlinear formulation was presented regarding the fibres elastoplasticity.

This study presents extension of the 1DBEM/BEM coupling formulation for 3D analyses. Furthermore, the
adherence loss phenomenon is considered herein. Thus, a nonlinear bond-slip formulation is developed. BEM
formulations have already been applied for 2D bond-slip analyses in the literature, as one can find in Rocha
et al. [3]. The pullout test can be properly modelled by the proposed formulation herein. The numerical results
demonstrate the accuracy and robustness of the proposed formulation.

2 Nonlinear 1DBEM/BEM coupling formulation

2.1 3D BEM singular formulation

The BEM displacements integral equation represents the solid (Ω) mechanical behaviour. This equation can
be obtained through the weighted residual technique as presented by Brebbia [4] and it is written as follows:
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in which ui and pi represent displacements and tractions at the boundary, respectively. Γ is the boundary of
Ω. cij is the free term, which is equal to the Kronecker delta (δij) for internal points and 0.5δij for points at
smooth boundaries. U∗

ij and T ∗
ij are the Kelvin’s fundamental solutions, found in Brebbia and Dominguez [5], for

displacements and tractions, respectively.
The BEM solves Eq. 1 in approximate form. Then, the geometry and mechanical fields are approximated by

Lagrangian isoparametric elements positioned at the boundary (Γ). Linear quadrilateral elements with 4 fodes are
utilised herein. Besides, non-smooth geometries and discontinuous boundary conditions can be handled through
discontinuous and semi-continuous boundary elements. Equation. 1 must be evaluated for all collocation points
(source points) to represent the solid’s mechanical behaviour. Because of the singular nature of the fundamental
solutions, singularity subtraction technique is applied herein, as presented in Guiggiani et al. [6]. Otherwise, the
regular kernels are numerically integrated by Gauss-Legendre scheme. Hence, Eq. 1 can be algebraically written
as follows:

Hu = Gp +

∫
Ω

U∗
kibidΩ (2)

where the matrices H and G contain, respectively, the integration of kernels T ∗
ij and U∗

ij along Γ. The domain
term has not been treated so far, thus it cannot be written in a algebraic form. This term will be numerically treated
in the coupling formulation section.

Equation 1 can also be used to represent internal points’ displacements. This expression is algebraically
written as follows:

ui + Hu = Gp +

∫
Ω

U∗
kibidΩ (3)

where ui is the vector of displacements of the internal point i.

2.2 1DBEM in space: reinforcements modelling

The 1DBEM displacements integral equation can also be obtained through the weighted residual technique
applied for 1D domains (x̄) as described by Rodrigues Neto and Leonel [2] and it is written as follows:

ui −N∗
i1u1 +N∗

inun = −u∗i1N1 + u∗inNn +

∫ L

0

φj(x̄)u∗ix̄ dx̄ pj (4)

in which subscripts 1 and n represent the 1D domain endpoints. ui andNi are, respectively, the axial displacement
and internal force at the i point. φj are the Lagrangian functions used for the distribuited load approximation over
the domain x̄, using its nodal values pi. u∗ij and N∗

ij are the fundamental solutions for axial displacements and
internal forces, respectively, which can be found in Banerjee and Butterfield [7], Antes [8].

The integral formulation (Eq. 4) requires the discretisation of the structural boundaries into parametric ele-
ments. One notices that the boundary is composed only of the 1D element endpoints, i.e., i = 1 and i = n. Any
other value for i leads to an internal point equation. However, internal points must be accounted in the 1DBEM
algebraic system, to improve the accuracy of the distributed load representation. Hence, the 1DBEM formula-
tion enables high-order isoparametric elements. Thus, after applying the element’s approximations, Eq. 4 can be
algebraically written as follows:

H̄u = Ḡn + ¯̄Gp (5)

where H̄ and Ḡ contain the values of the fundamental solutionsN∗
sf and u∗sf , respectively, applied in the boundary

points. u, p and n vectors contain, respectively, the nodal values of axial displacement, nodal values of distributed
force and concentrated loads. This expression is so far valid for the local coordinate system. The following global
expression can be written by applying axial rotation as described by Kassimali [9] and considering n = 0:

KFuF = GFpF (6)

in which uF and pF vectors contain the values of u and p in the global coordinate system.
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2.3 Algebraic equations of the coupling formulation

Consider the reinforcements completely embedded into a solid Ω and positioned along the line Γ̄. The
coupling scheme accounts for the mechanical interaction among reinforcements and domain, which is represented
by the adherence force.

The adherence force is modelled as one-dimensional distributed load along the reinforcement’s line Γ̄. How-
ever, one-dimensional loads applied in a three dimensional domain lead to divergent singular values in the funda-
mental solutions, i.e., which cannot be regularised. Thus, a matching approximation is required, which is similar to
the “special element” proposed for FEM/BEM couplings in Coda et al. [10]. The adherence force in Ω is assumed
to be applied over a two-dimensional surface, which represents the external surface area of the reinforcements.
A cylindrical shell of radius RF is adopted herein. Considering the reinforcements as thin elements, i.e., with a
length higher than RF , one can writes the following simplification:

pD = 2πRFQi (7)

where Qi is the value of the distribuited force over the cylindrical shell, assumed as constant along the angular
direction θ. Thus, the integration of the adherence force over the reinforcements elements can be accounted in the
domain integration of Eq. 1 and numerically evaluated as follows:∫

Γ̄

U∗
ij(pD)jdΓ =

np1∑
g1=1

[
np2∑
g2=1

[
Uij

(
xf (ξg1 , ξg2),xs

)
|jac2(ξg2)|ωg2

]
|jac1(ξg1)|ωg1φm(ξg1)

]
(pD)j
2πRF

(8)

where g1 and g2 represent the numerical integrations used for the axial coordinate (x̄) and the angular coordinate
(θ), respectively. ξi, ωgi and npi are the dimensionless coordinates, weight values and total number of integration
points of the numerical integration i, respectively.

Figure 1 illustrates scheme of this special integration over a reinforcement element considering a source point
positioned at Γ̄, np2 = 4 and a fixed coordinate ξg1 .

x1
x2

x3

Figure 1. Integration scheme over a reinforcement element, considering 4 integration points over the angular
coordinate and a fixed axial coordinate.

Therefore, the adherence force can be properly accounted as a body force into the BEM formulation through
Eq. 8. Hence, the BEM integral equation for boundary points (Eq. 2) can be rewritten as follows:

HCCuC = GCCpC + GCFpD (9)

where the term GCFpD is the particular form of the domain term obtained by applying Eq. 8. The subscripts C
and F indicate boundary and fibre, respectively. The subscript D indicates the internal point of Ω coincident with
a fibre point. In the above equation, a matrix HXY or GXY result from source point at X and field point at Y.

The BEM integral equation for internal points (Eq. 3) can also be rewritten herein. This equation must be
applied for internal points coincident with the reinforcements nodes, i.e., ui = uD. Thus:

uD = GFCpC −HFCuC + GFFpD (10)
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2.4 Algebraic representation of the coupling formulation considering bond-slip effects

The nonlinear bond-slip formulation accounts for the relative displacement among reinforcement and matrix.
Therefore, the compatibility of displacements is written as follows:

s = uD − uF (11)

where s is the vector of nodal slip.
The energy dissipation phenomenon during the slipping process is represented by the adherence law, which

relates slip and adherence forces. With that, one can determine the variables values for an equilibrium configura-
tion. Figure 2 illustrates the adherence law adopted herein. This is a multi-linear function inspired by the most
often suggested laws in the simulation of reinforced concrete, CEB-FIP [11], Huang et al. [12].

Ef

s

MAXf

RESf

1s 2s

0f

0s 3s

(a) Graphic representation

f(s) ≤ f0 , s = 0

f(s) = f0 +
(

fMAX−f0
s0

)
s , 0 < s ≤ s0

f(s) = fMAX , s0 < s ≤ s1

f(s) = fMAX −
(

fMAX−fRES
s2−s1

)
(s− s1) , s1 < s ≤ s2

f(s) = fRES − fRES

(
s−s2
s3−s2

)
, s2 < s ≤ s3

(b) Mathematical representation

Figure 2. Bond-slip behaviour modelling.

In order to properly simulates the pull-out test, the formulation must allow for boundary conditions applied
directly at the reinforcing bar outside Ω. Thus, a connection element proposed in Rodrigues Neto and Leonel [2]
is used herein, as illustrated in Fig. 3. This approach adds extra nodes in the reinforcements mesh, in which the
prescribed displacement ūD is applied.

connection element

Figure 3. Prescribed displacement at reinforcements using the connection element.

Therefore, Eq. 6 is updated by Eq. 11 and the consideration of the connection element with the applied ūD.
Thus:

KFuD + ¯̄KsupūD + GEfD = KFs (12a)
¯̄KinfuD + ¯̄KdiagūD + ¯̄GinffD = freac + ¯̄Kinfs (12b)

where freac is the reaction force associated with the prescribed displacement ūD. All adherence forces are nil at the
connection element nodes, since their position is outside the domain Ω. The matrices KF and GF are the original
terms of the reinforcements matrices. Besides, ¯̄Kinf , ¯̄Ksup, ¯̄Kdiag, ¯̄Ginf , ¯̄Gsup and ¯̄Gdiag are the extra terms
obtained by the consideration of the connection element nodes in addition to the original reinforcements mesh.
Equation. 12a represents the nodal equilibrium of the original reinforcement mesh and Eq. 12b represents the
equilibrium of the connection element nodes.

The algebraic system of equations for the coupling formulation is obtained by considering Eq. 9, Eq. 10 and
Eq. 12. Then:
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
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B̄FC

0

0
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0

0

− ¯̄Ksup

− ¯̄Kdiag

 {ūD}+


0

0

KF

¯̄Kinf

 {s} (13)

The nonlinear problem is solved through the Newton-Raphson technique, which consistis of trial and cor-
rection phases. Firstly, the prescribed boundary conditions are sub-divided into load steps: ∆p̃C and ∆ūD. The
trial phase consists of assuming the slip variation ∆s as nil and apply the loads (∆p̃C and ∆ūD) into Eq. 13.
The obtained adherence forces are evaluated in the adherence law (Figure 2(b)) accounting for the accumulated s
response as follows:

∆pdes = −pD + ∆pE − pADM (14)

where pADM are the admissible values provided by the adherence law and pdes is the unbalanced forces vector.
The correction phase identifies the k nodes in which ∆pk

des 6= 0. Then, these unbalanced values are reapplied
into the system as follows:


ACC 0 0k −Gj
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0 KF −Kk
F Gj
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j
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
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inf
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{

∆pk
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}
(15)

Then, the variables ∆xC, ∆uD, ∆s and ∆pD are accumulated by its variation values (δ). The convergence
verification consists of evaluating the modulus of ∆pdes normalised by the accumulated values pD.

3 Numerical application: the pullout test

The pullout test consists of a steel bar immersed into a concrete cylinder as illustrated in Fig. 4(a). The steel
bar is pulled-out from its left extremity. Experimental results of this test have been presented by Zulini [13] and
are used herein as reference.

(a) (b)

Figure 4. Fibre pull-out test in reinforced concrete: specimen’s scheme in mm (a) , Zulini [13], adapted, and BEM
mesh for the numerical analysis (b).

Figure 4(b) illustrates the BEM mesh for the numerical analysis, which is composed of 3816 linear quadrilat-
eral elements and 4271 collocation points. 100 quadratic reinforcement elements discretise the steel bar. Previous
analysis have shown mesh convergence for this model. Zulini [13] provides experimental data regarding the rela-
tive displacement of the steel bar right end versus the normalised adherence stress (τad). This relative displacement
is numerically represented by the slip value at the point p1 illustrated in Fig.4(b). τad is evaluated from the reaction
force freac at the opposite fibre extremity, as follows:
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



A Nonlinear BEM Coupled formulation for 3D bond-slip analysis

τad =
freac/πφlb

(70/fcm)
1/4

(16)

where φ is the steel rebar diameter, lb is the length of the adherence region and fcm is the concrete compression
strength.

The following mechanical properties are considered herein: concrete Young modulus and Poisson ratio equal
to 41.16 GPa and 0.2, respectively; fcm = 67.44 MPa; Young modulus of the steel bar equals to 201.8 GPa and
φ = 16 mm. The prescribed displacement at the steel rebar end (ūD = 10 mm) represents the action of the pullout
claw machine. The adherence law considers the following parameters, based on the suggested values from Huang
et al. [12]: s0 = 0.8 mm; s1 = 2.0 mm; s2 = 10.0 mm; s3 = 3 s2; fMAX = 0.55 (fcmπφ); fRES = 0.4fMAX .
The nonlinear process for the bond-slip analysis has been solved by 150 load steps and tolerance for convergence
of 10−9. The iterative process required the amount of iterations in the range of 1 to 15 for convergence within each
load step.

Figure 5 illustrates the results of the proposed model (“Multi-linear law”) and the reference responses (“Ex-
perimental”). Besides, an alternative law (“Linear law”) is illustrated herein. This law accounts for the same
parameters previously mentioned and assumes s0 = 0. This figure demonstrates the excellent agreement among
the numerical and experimental responses for all slip values. The numerical approach accurately predicted the
expected behaviour. The proposed multi-linear law leads to more accurate results, since it is closer to experimental
laws often suggested for this application.

Figure 5. Adherence stress as function of the slip at point p1.
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Figure 6 illustrates the nodal displacements at the boundary, along directions x and z, at the last load step.
Reinforcements and boundary meshes are illustrated herein. Figure 6 presents a consistent behaviour for displace-
ments along the boundary and one can clearly see the steel bar being pulled out of the concrete specimen. More-
over, the proposed coupling procedure leads to the accurate stress transfer among the structural elements involved
in system. Such behaviour has major importance during the nonlinear process. Besides, Fig. 6(b) shows clearly
the symmetrical response obtained around the cylinder’s central axis, which is within the expected behaviour.

4 Conclusions

The nonlinear 1DBEM/BEM coupled formulation for the mechanical analysis of 3D reinforced structures
and materials was successfully presented in this study. The numerical application demonstrate its robustness and
accuracy in modelling complex 3D engineering problems, such as the pullout test. Particularly, the accuracy on the
maximum adherence stress value and the post-peak behaviour must be emphasised. It is worth stressing the real
3D aspect of this modelling. Besides, the analysis of the bond-slip effects via 3D BEM formulations is original
in the literature. The efficiency of the formulation was also illustrated, regarding the reduced number of degrees
of freedom in the model and the reduced number of iterations to achieve convergence. Therefore, the proposed
formulation is robust, stable and has large potential for solving complex real-life structural problems.
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Figure 6. Boundary nodal displacements in directions x (a) and z (b).

(a) (b)
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vol. 1.
[12] Huang, Z., Engström, B., & Magnusson, J., 1996. Experimental investigation of the bond and anchorage
behaviour of deformed bars in high strength concrete. Chalmers University of Technology, Division of Concrete
Structures, Report, vol. 95, n. 4, pp. 32.
[13] Zulini, I., 2019. Effects of confinement in bond between reinforcement bar and high strength concrete.
Master’s thesis, Department of Structural Engineering, São Carlos School of Engineering, University of São Paulo,
São Carlos.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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