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Abstract. This paper is concerned with new formulations of local meshfree numerical method, for the solution of 

dynamic problems in linear elasticity, Integrated Local Mesh Free (ILMF) method. The key attribute of local 

numerical methods is the use of a modeling paradigm based on a node-by-node calculation, to generate the rows 

of the global system of equations of the body discretization. In the local domain, assigned to each node of a 

discretization, the work theorem is kinematically formulated, leading thus to an equation of mechanical 

equilibrium of the local node, that is used by local meshfree method as the starting point of the formulation. The 

main feature of this paper is the use of a linearly integrated local form of the work theorem. The linear reduced 

integration plays a key role in the behavior of local numerical methods, since it implies a reduction of the nodal 

stiffness which, in turn, leads to an increase of the solution accuracy. As a consequence, the derived meshfree and 

finite element numerical methods become fast and accurate, which is a feature of paramount importance, as far as 

computational efficiency of numerical methods is concerned. The cantilever beam was analyzed with this 

technique, in order to assess the accuracy and efficiency of the new local numerical method for dynamic problems 

with regular and irregular nodal configuration. The results obtained in this work are in perfect agreement with 

Mesh-Free Local Petrov-Galerkin (MLPG) and the Finite Element Method (FEM) solutions. 

Keywords: Local Meshfree numerical method, dynamic problems, Moving Least Squares (MLS), Integrated 

Local Mesh Free (ILMF), Mesh-Free Local Petrov-Galerkin (MLPG).  

1  Introduction 

Numerical methods based on grids, as the finite element method (FEM), are widely used in engineering and 

science. Grid based methods required high quality meshes when solving fracture mechanics problems, with 

material discontinuities, nonlinear problems, with large displacements, where excessive mesh distortion takes 

place. On the other hand, meshfree methods were developed with the expectation of providing more adaptive, 

accurate and stable numerical solutions, to deal with problems where conventional grid-based methods are not 

well suited, Daxini and Prajapati [1]. In general, their formulation is based in the weighted residual method, see, 

Finalyson [2]. 

Different meshless methods have been developed during the last 20 years, as reported by Chen et. al. [3]. 

Some of these methods, based on a weighted residual global weak form, were applied in solid mechanics, such as 

the diffuse element method (DEM), presented by Nayroles et. al. [4], the reproducing kernel particle method 

(RKPM), presented by Liu et. al. [5], and the element free Galerkin (EFG), Belytschko et. al. [6]. Other methods 

emerged based on  weighted residual local weak forms, such as the meshless local Petrov-Galerkin method 

(MLPG), presented by Atluri and Zhu [7], the meshless local boundary integral equation method (MLBIE), see 

Zhu [8], the local point interpolation method (LPIM), presented by Liu and Gu [9], the local radial point 

interpolation method (LRPIM), presented by Liu et. al. [10], the meshless finite volume method (FVM), presented 

by Atluri et. al. [11], the rigid body displacement meshfree method (RBDMF) and the generalized strain meshfree 

method (GSMF), both presented by Oliveira and Portela [12].  
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MLPG, the most popular of these methods, is based on a moving least squares approximation (MLS). The 

main difference of the MLPG method to other global meshless methods, such as EFG or RKPM, is that local weak 

forms are used for integration on overlapping regular shaped local subdomains, instead of a global weak form. 

Consequently, the method does not require the use of a background global mesh, but only a background local grid, 

which usually has a simple shape. Using the MLS approximation, the ILMF model implements a linear reduced 

numerical integration, on the boundaries of the local integration domain associated to each node, with one single 

point per segment, which leads to a point-wise discrete form that represents equilibrium of tractions defined at 

integration points. The reduced integration, a key feature of this formulation, induces a reduction of the nodal 

stiffness which, in turn, increases the solution accuracy, as a consequence of the theorem of the minimum total 

potential energy. 

This paper is concerned on the size effect of the irregularity of the nodal arrangement, referred to by the 

irregularity parameter (Cn), when the discretization is considered with fixed values of the local support domain 

(𝛼𝑠) and the local quadrature domain (𝛼𝑞). The paper presents a comparison of the relative error for frequencies 

natural for three different irregular nodal distributions used to solve the benchmark problem of the Timoshenko 

cantilever beam. Results obtained with the ILMF model are compared with the results of the MLPG, as well as the 

Finite Element Method (FEM) solution. Optimal results were obtained. 

2  Methodology 

Let Ω be the domain of a body and Г its  boundary, subdivided in Гu and Гt that is Г = Гu U Гt; in the Fig. 1 

show the nodal points P, Q and R have corresponding local domains ΩP, ΩQ, and ΩR. The general fundamental 

boundary value problem of linear elastostatics aims to determine the distribution of stresses σ, strains ε and 

displacements u, throughout the body, when it has constrained displacements 𝐮̅, on Гu and it is loaded by an 

external system of distributed surface and body forces with densities denoted, respectively by 𝐭 ̅, on Гt and b, in 

Ω. 

 

Figure 1. Global domain Ω and the local domains ΩP, ΩQ and ΩR, with boundary Г = Гu U Гt represented. 

The solution of these problem is a totally admissible elastic field that simultaneously satisfies the kinematic 

admissibility of the strains and the static admissibility of the stresses. If this solution exists, it can be shown that it 

is unique, provided linearity and stability of the material are admitted. Such is the Kirchhoff's theorem, on the 

uniqueness of solutions of the elastostatic boundary value problem, Kirchhoff [13]. For the sake of generality, the 

solution of the posed problem is derived through the work theorem. 

In the body's domain Ω consider a statically admissible stress field σ, which is any stress field that satisfies 

the equilibrium with the system of applied external forces which therefore satisfies 

 0,+ =T bL   (1) 

in the domain Ω, with boundary conditions 
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 ,=t nσ = t   (2) 

on the static boundary Гt, in which L is a matrix differential operator; t is the vector of traction components; 

𝐭 ̅is the vector of the prescribed tractions and n is the matrix of the components of the unit outward normal to the 

boundary. 

In the domain Ω consider an arbitrary local domain ΩQ, assigned to a reference point Q ∈ ΩQ, with local 

boundary Г = ГQi U ГQt U ГQu, ГQi, in which ГQi is the interior local boundary, while ГQt and ГQu are local boundaries 

that share the global boundaries, respectively the static boundary Гt and the kinematic boundary Гu, as represented 

in Fig. 1. The work theorem will be used as a local form that is valid in the arbitrary local domain ΩQ. Due to its 

arbitrariness, this local domain ΩQ ∪ ГQ ∈ Ω ∪ Г can be overlapping with other similar sub-domains that can be 

defined in the body. 

The work theorem establishes an energy relationship, valid in an arbitrary local domain ΩQ ∈ Ω, between 

two independent elastic fields that can be defined in the body which are, respectively a statically admissible stress 

field that satisfies equilibrium with a system of external forces, and a kinematically admissible strain field that 

satisfies the compatibility with a set of constrained displacements. Derived as a weighted residual statement, the 

work theorem serves as a unifying basis for the formulation on numerical models Continuum Mechanics, Brebbia 

and Tottenham [14]. Expressed as an integral local form, defined in the local domain ΩQ, the work theorem can 

be written in a compact form, simply as 

 ,
  

+  =   
Q Q Q

T T Td d d* * *t u b u σ   (3) 

in which the stress field σ and the strain field 𝜺∗ are not linked by any constitutive relationship and therefore, 

they are independent of each other, see Olivera and Portela [12]. The statically admissible stress field σ can be any 

stress field that is in equilibrium with the system of applied external forces, therefore satisfying eqs. (1) e (2), 

which is not necessarily the stress field that the system of applied external forces introduces in the body. The 

kinematically admissible strain field ε* can be any strain field defined in the body, generated by continuous 

displacements u* with small derivatives, compatible with an arbitrary set of constraints specified on the kinematic 

boundary, which is not necessarily the strain field that actually settles in the body. Finally, the local domain ΩQ is 

any arbitrary sub-domain of the body, associated to the reference point Q, as represented in Fig. 1, where the 

independent fields σ and ε* can be defined.  

Kinematic formulations consider, in the work theorem, a particular and convenient specification of the 

kinematically admissible strain field, leading thus to an equation of mechanical equilibrium that is used to generate 

the stiffness matrix of the numerical model. Bearing in mind the essential feature of the work theorem, which is 

the complete independence of the stress field σ and the strain field ε*, the strain field can be conveniently defined 

by a rigid-body displacement that can be defined as 

 *(x) ,=u c   (4) 

where C is a constant vector that conveniently leads to null strains that is 

 *(x) .=ε 0  (5) 

When this kinematic formulation is considered, the local form of the work theorem, eq. (3), simply leads to 

the equation 

  d  d  d 0,
 −  

+ +  =  
Q Qt Qt Q

t t b   (6) 

which states an integral form of mechanical equilibrium, of tractions and body forces, in the local domain Ω𝑄, are 

represented in Fig. 2.  This equation expresses the local version of the basic Euler-Cauchy stress principle that is 

sometimes referred to as the defining principle of continuum mechanics.  
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Figure 2.  Schematic representation of the equilibrium of tractions and body forces, pointwisely defined at 

collocation points of a local form of the work theorem associated with a field node Q.  

The modeling strategy, adopted to solve the actual elastic problem, considers that the stress field σ, required 

to satisfy the equilibrium with a system of external forces, is assumed as the stress field that actually settles in the 

body, when it is loaded by the actual system of external distributed surface and body forces, with the actual 

displacement constraints. Recall that the elastic field that actually settles in the body is the unique fully admissible 

elastic field that satisfies the given problem. Therefore, besides satisfying static admissibility, through eq. (1) and 

(2), that is the same as satisfying equilibrium through eq. (6), generated by the weak form eq. (3) of the work 

theorem, this unique fully admissible elastic field also must satisfy kinematic admissibility defined as 

 ,= Lu   (7) 

in the domain Ω, with boundary conditions 

 ,=u u   (8) 

on the kinematic boundary Гu, in which the displacement u is assumed continuous with small derivatives, in 

order to allow for geometrical linearity of the strain field ε. Hence, eq. (8), which specifies the constraints of the 

actual displacements, must be enforced in any numerical model, in order to provide a unique solution of the elastic 

problem. For the sake of simplicity, this paper considers the formulation of the ILMF model in the absence of 

body forces. Consequently, the nodal equations of equilibrium are always defined only on the boundary of the 

local domain. 

The meshless method with reduce integration is based on the widely used moving least-squares (MLS) 

approximation, introduced by Atluri and Zhu [15]. The MLS approximation is one of the best methods to 

approximate data with a good accuracy. Circular or rectangular local supports centered at each nodal point can be 

used. In the region of a sampling point X, the domain of definition of MLS approximation is the subdomain Ωx, 

where the approximation is defined, as showed in the Fig. 3. 

The definition domain contains all the nodes whose MLS shape functions do not vanish at this sampling 

point. Therefore, the domain of influence of each node, is the union of the MLS domains of definition of all points 

in the local domain of the node. 

Finally, local mesh free formulations use a node-by-node stiffness calculation to generate, in the domain of 

influence of the local node, the respective rows of the global stiffness matrix. 
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Figure 3. Representation of a global domain Ω and boundary Г in the meshless discretization, with Xi nodes 

distributed within the body. 

2.1 Mesh-free Local Petrov-Galerkin (MLPG) 

For a nodal discretization of a body using the Mesh-free Local Petrov-Galerkin (MLPG) method, the 

respective system of algebraic equations is calculated, in a node-by-node process, by integrating the local form 

assigned to each node, eq. (6), with local domains rectangular or circular and numerical quadrature applied to each 

side, or quadrant, of the local domain, as schematically represented in Fig. 4. 

 

Figure 4. Schematic representation of numerical quadrature points, of local MLPG domains, for calculating the 

local form of the work theorem, with the formulation of rigid body displacement. 

The local form of the work theorem with the rigid-body displacement, eq. (6), can be written simply as  

  d  d  d
 −  

−  = +   
Q Qt Qt Q

t t b   (7) 

which can be written as 

 ˆ =Q QK u F   (8) 

 

where KQ, the nodal stiffness matrix associated with the Q field node, is a 2x2n matrix (n is the number of nodes 

included in the reference domain influence Q node which is the union of all definition MLS domains integration 

points in the local domain ΩQ) given by  
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  d
 −

= − 
Q Qt

QK nDB   (9) 

and FQ is the respective force vector given by 

  d  d
 

=  +  
Qt Q

QF t b   (10) 

Consider that the problem has a total of N field nodes Q, each one associated with the respective local region 

ΩQ. Assembling eq. (8), for all M interior and static – boundary field nodes leads to the global system of 2M x 2N 

equations  

 ˆ .=Ku F  (11) 

Finally, the remaining equations are obtained from the N – M boundary field nodes on the kinematic 

boundary. For a field node on the kinematic boundary, a direct interpolation method is used to impose the 

Kinematic boundary condition as equations  

 

1

ˆ(x ) (x ) ,
=

= =
n

k j i j ik k

i

u u u  (12) 

Or, in matrix form as equations  

 

1

ˆ ,
=

=  =
n

k k k

i

u u u  (13) 

with k = 1, 2, where ku  is specified nodal displacement component. Equations (12) are directly assembled into 

the global system of eq. (11).  to build the respective nodal stiffness matrix of MLPG, it is computationally much 

more efficient than the other meshless methods that use domain integration, as is the case of the EFG method, 

presented by Belytschko et. al. (1994), or the MLPG1 and MLPG3 methods presented by Atluri and Shen (2002). 

2.2 Integrated Local Mesh Free method (ILMF) 

Assuming a variation linear of the tractions along each boundary segment of the local domain, the local integral 

form of equilibrium can be evaluated with a single quadrature point, centered on each segment of the boundary, 

Fig. 5. Applying this linear integration process in the Eq. (7), the following expression is obtained 

 x x

1 1

t t  d
= = 

− = +   
i t

j k

Q

n n

i t

i ji t

L L

n n
b   (14) 

 

Figure 5. Schematic representation of numerical quadrature points, of local ILMF domains, for the calculation of 

the local form of the work theorem, with the formulation of rigid body displacement. 
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For a given nodal distribution, Eq. (14) can be presented as follows 

 xx x

1 1

ˆ t  d
= = 

− = +   
i t

k
j j

Q

n n

i t

i ji t

L L

n n
n DB u b   (15) 

which can be written as 

 ˆ =Q QK u F   (16) 

where KQ, the nodal stiffness matrix associated with the Q field node, is a 2x2n matrix (n is the number of nodes 

included in the reference domain influence Q node which is the union of all definition MLS domains integration 

points in the local domain ΩQ) given by  

 x x

1

ˆ
=

= − 
i

j j

n

i
Q

ii

L

n
K n DB u   (17) 

and FQ is the respective force vector given by 

 x

1

t  d
= 

= +  
t

k

Q

n

t
Q

jt

L

n
F b  (18) 

Consider that the problem has a total of N field nodes Q, each one associated with the respective local region 

ΩQ. Assembling eq. (16), for all M interior and static – boundary field nodes leads to the global system of 2M x 

2N equations  

 ˆ .=Ku F  (19) 

Finally, the remaining equations are obtained from the N – M boundary field nodes on the kinematic 

boundary. For a field node on the kinematic boundary, a direct interpolation method is used to impose the 

Kinematic boundary condition as equations  

 

1

ˆ(x ) (x ) ,
=

= =
n

k j i j ik k

i

u u u  (20) 

Or, in matrix form as equations  

 

1

ˆ ,
=

=  =
n

k k k

i

u u u  (21) 

with k = 1, 2, where ku  is specified nodal displacement component. Equations (12) are directly assembled 

into the global system of eq. (16).   

2.3 Parameters of the Meshless Discretization 

This section presents some numerical results for Cantilever beam for different nodal configurations. The 

effects of the size of local support and quadrature domain are analyzed and compared with exact solution. 

For a generic node i, the size of the local support ΩS and the local domain of integration Ωq are respectively 

given by  

 , =S S ir d  (21) 

 , =q q ir d  (22) 

in which di represents the distance of the node i, to the nearest neighboring node; for the analysis is performed 

for two different values of the local support domain size (αs = 3.5), and the local quadrature domain size (αq = 0.5)  
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2.4 Irregular nodal arrangement 

The nodal irregularity is generated by changing randomly the coordinates of the nodal regularity distribution 

by small distance, this movement can be calculated by 

 
11 1' ,= 

ii i n xx x c d  (23) 

 
22 ' ,= 

ii i n xx x c d  (24) 

in which Cn is a parameter that controls the nodal irregularity and vary randomly in the range of 0.0 and 0.3. 

For nodes located in the boundary there are restrictions that depend on the position of the node.  

3  Dynamic Analysis  

The domain Ω is represented by a set of distributed nodes, for dynamic analysis u is a function of space and 

time. Only the equations for the space coordinates are discretized. Using the MLS shape is obtaining the following 

discretized system equations for the Ith field node. 

 ( ) ( ) ( ) ( )+ + =I I I It t t tM u C u K u F  (25) 

where u is the vector of nodal displacements (or nodal displacement parameters) for nodes in the support 

domain of the Ith field node, MI is the nodal mass matrix and CI is the nodal damping matrix. 

 

Equation (25) presents two linear equations for the Ith field node, using this equation for all nodes in the 

entire domain Ω, and assembling all these 2N equations, it is obtained the final global system equations in the 

following matrix form  

 + + =MU CU KU F  (26) 

Equation (26) is system equation for dynamic analyses of two-dimensional solids. Solving this equation are 

obtained the displacements for all field nodes and the retrieve all the stresses at any point in the problem domain.  

For free vibration analysis, the aims are obtained the natural frequencies and the corresponding vibration 

nodes. The displacement u (x, t) can be written as a harmonic function of times as follows 

 ˆ(x, t) (x) sin( )= +t u Φ u  (27) 

where w is the natural frequency and φ is the phase of the harmonic motion and 𝒖̂ are the amplitude for 

displacement. Substituting eq. (27) in eq. (26) is obtained the final system equation in terms of the amplitudes of 

modal displacements for free vibration analysis. 

 
2 ˆ( )− =K M U 0  (28) 

where 𝐔̂ is the vector amplitudes for all nodal displacements; eq. (28) can also be written in the following 

typical eigenvalue equation  

 ( ) 0− =K M q  (29) 

where λ = ω2 is the eigenvalue, and q is the eigenvector. This equation can be solved using a standard 

eigenvalue solver to obtain eigenvalues λ𝒊 (i = 1, 2,…, N) and the corresponding q. The natural frequencies of the 

structures are given by ω𝑖 = √ 𝝀𝒊. The vibration modes correspond to the eigenvectors.  
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4  Numerical Examples 

The MLPG and ILMF methods were used for the free vibration analysis of the cantilever beam shown in Fig. 

6. The parameters are presented in table 1. In the free vibration analyses αs = 3.5 was used for the local support 

domain and αq = 0.5 for local quadrature domain. 

 

Figure 6. Cantilever beam 

Table 1. Parameters of Cantilever beam  

Parameters Values 

Height, D 12 

Length, L 48 

Thickness, t                              1 

Modulus of Elasticity, E      30 000000 

Poisson`s Ratio, ν 0.3 

Mass density 1 

 

Three kinds of regular nodal arrangements (189, 403 and 1261) were used, Fig. 7. 

 

a) 21 x 9 = 189 nodes 

 

b) 31 x 13 = 403 nodes 
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c) 97 x 13 = 1261 nodes 

Figure 7. Cantilever beam 

Frequencies of three nodal distributions obtained for MLPG and ILMF are listed in table 2, table 3 and table 

4. The results of the FEM, Liu [16]. The relative error for the natural frequency is given, respectively by 

 
−

=
MLPG FEM

r
FEM

  (30) 

 
−

=
ILMF FEM

r
FEM

  (31) 

Table 2. Natural frequencies of Cantilever Beam using MLPG and ILMF with 189 nodes 

Modo MLPG ILMF Reference (FEM – 

4850 DOFs) 

Relative error 

(MLPG/FEM)  

Relative error 

(ILMF/FEM) 

1 28.60 20.22 27.72 3.17E-02 2.71E-01 

2 141.06 140.72 140.86 1.42E-03 9.94E-04 

3 185.02 185.23 179.71 2.95E-02 3.07E-02 

4 327.37 323.40 323.89 1.07E-02 1.51E-03 

5 519.63 520.99 523.43 7.26E-03 4.66E-03 

6 537.45 536.58 536.57 1.64E-03 1.86E-05 

7 729.32 728.27 730.04 9.86E-04 2.42E-03 

8 884.05 881.86 881.28 3.14E-03 6.58E-04 

9 900.43 900.83 899.69 8.23E-04 1.27E-03 

10 1001.18 1000.68 1000.22 9.60E-04 4.60E-04 

Table 3. Natural frequencies of Cantilever Beam using MLPG and ILMF with 403 nodes 

Modo MLPG ILMF Reference (FEM – 

4850 DOFs) 

Relative error 

(MLPG/FEM)  

Relative error 

(ILMF/FEM) 

1 28,60 20,22 27,72 3,17E-02 2,71E-01 

2 141,29 141,02 140,86 3,05E-03 1,14E-03 

3 185,64 184,51 179,71 3,30E-02 2,67E-02 

4 325,13 323,57 323,89 3,83E-03 9,88E-04 

5 523,75 522,76 523,43 6,11E-04 1,28E-03 

6 537,03 535,49 536,57 8,57E-04 2,01E-03 

7 729,41 730,62 730,04 8,63E-04 7,94E-04 

8 882,58 885,35 881,28 1,48E-03 4,62E-03 

9 899,01 900,19 899,69 7,56E-04 5,56E-04 

10 1.001,63 998,69 1.000,22 1,41E-03 1,53E-03 
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Table 4. Natural frequencies of Cantilever Beam using MLPG and ILMF with 1261 nodes 

Modo MLPG ILMF Reference (FEM – 

4850 DOFs) 

Relative error 

(MLPG/FEM)  

Relative error 

(ILMF/FEM) 

1 28,60 20,22 27,72 3,17E-02 2,71E-01 

2 140,17 140,81 140,86 4,90E-03 3,55E-04 

3 186,51 174,53 179,71 3,78E-02 2,88E-02 

4 321,94 324,24 323,89 6,02E-03 1,08E-03 

5 525,69 522,81 523,43 4,32E-03 1,18E-03 

6 536,42 536,86 536,57 2,80E-04 5,40E-04 

7 729,92 730,66 730,04 1,64E-04 8,49E-04 

8 881,48 881,00 881,28 2,27E-04 3,18E-04 

9 901,67 899,13 899,69 2,20E-03 6,22E-04 

10 1.001,50 999,84 1.000,22 1,28E-03 3,80E-04 

In order to visually facilitate the presentation of the data, these values are plotted in the Fig. 8.  

 

 

a) 189 nodes 

 

b) 403 nodes 

 

 

c) 1261 nodes 

Figure 8. Relative error of natural frequencies for three different regular nodal arrangement. 

Figure 8 shows that the first mode presented the major relative error for ILMF method regardless of the 

regular nodal arrangement. MLPG present a better behavior when compared with the FEM (ANSYS) results. In 

general, the relative error decreases when the number of nodes increases.  
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Table 4 presents the relative error of the natural frequencies using the MLPG method with different values 

for the irregularity parameter Cn (0.1, 0.2 and 0.3). 1261 nodes are used for these analyses.  

Table 4. Relative error of Natural frequencies of Cantilever Beam using MLPG with 1261 nodes and different 

irregular nodal distributions 

Modo Reference (FEM – 

4850 DOFs) 

Relative error  

Cn = 0.1  

Relative error  

Cn = 0.2 

Relative error  

Cn = 0.3 

1 27,72 3.19E-02 3.17E-02 3.12E-02 

2 140,86 4.73E-03 4.19E-03 7.30E-03 

3 179,71 3.86E-02 3.89E-02 1.51E-02 

4 323,89 2.89E-03 8.53E-03 7.18E-03 

5 523,43 2.61E-03 8.16E-03 1.88E-03 

6 536,57 2.46E-03 2.50E-03 1.58E-03 

7 730,04 4.48E-03 2.91E-04 2.51E-03 

8 881,28 3.15E-04 1.34E-03 1.19E-03 

9 899,69 5.36E-04 1.09E-03 4.77E-03 

10 1.000,22 1.93E-03 1.54E-03 2.17E-03 

Figure 9 shows the relative error of the natural frequencies of the cantilever beam using regular and irregular 

nodal arrangement and Fig. 10 presented the irregular nodal arrangement with the irregularity parameter Cn =0 .3, 

both with 1261 nodes. 

 

Figure 9. MLPG relative error of natural frequencies for three different value of the irregularity parameter Cn 

(0.1, 0.2 and 0.3) with 1261 nodes. 

 

Figure 10. Irregular nodal arrangement with Cn = 0.3 and 1261 nodes. 

Analyzing the Fig. 9, it can be noticed that for the nodal arrangement with many nodes, the relative error of 

the natural frequency is similar for different values of irregularity parameter (Cn=0.1 – 0.3) using the MLPG 

method. 
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5  Conclusions 

 

The Meshfree Local Petrov-Galerkin (MLPG) method presented more accurate behavior that the Integrated 

Local Mesh free (ILMF) method for calculating the natural frequencies of the cantilever beam, mainly for the first 

value. The reference results were obtained using the FEM (ANSYS) with an extremely fine mesh.  

 

The irregular nodal arrangement did not signifficatively influence the calculation of the natural frecuencies 

of the cantilever beam when 1261 nodes are used for the nodal discretization. 

 

The methods used in this research for solving problems related with irregular nodal arrangement were 

efficient and accurate when local mesh free methods were used. 
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