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Abstract. The present work proposes implementing the shape forms obtained through the Moving Least Square
(MLS) method in the Boundary Integral Equations, thus presenting a Boundary Mesh-Free Model (BMFM), based
on the Boundary Node Method. Although based on the Boundary Integral Equations, BMFM does not require a
boundary mesh to approximate the variables. In the proposed BMFM, the boundary is described by linear segments
of integration. Within each segment, the MLS is applied independently, which allows for better representation of
discontinuities on the displacement and force fields. At the end of the paper, BMFM was applied to a benchmark
problem. It was possible to verify that the proposed method led to results with very low errors, proving it to be a
valid alternative to the more classical, robust methods.
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1 Introduction

Due to the high complexity of the structures in the civil engineering field, it is not always possible to obtain the
strains and stresses along the structure analytically. To overcome this problem, numerical methods, which involve
some form of modelling, are usually applied, since they lead to reliable approximate results. Currently, the most
popular numerical method applied is the Finite Element Method (FEM). However, FEM presents some limitations,
such as: difficulty dealing with geometric nonlinear problems; considerable loss of accuracy of the stresses when
a C0 continuity is used in the interface of the elements; fracture propagation analysis; difficult implementation of
adaptive meshes in three-dimensional problems. Furthermore, the generation of the mesh has a high computational
cost, as presented by Andújar et al. [1], Oliveira Jr. [2] and Oliveira et al. [3].

As an alternative to FEM, it is possible to use the Boundary Element Method (BEM), which consists in
discretizing only the boundary of the structure, therefore reducing considerably the use of the mesh. BEM is based
on using the fundamental solutions of the differential equations, parallel to the weighted residual technique, to
derive the boundary integral equation. Given the known displacements and tractions forces on the boundary, this
equation describes the displacements of any point of the body. According to Brebbia and Trevelyan [4], BEM leads
to better results than FEM when applied to problems with stress concentrations. It also allows for easier modeling
of infinite domains. However, the generation of the mesh, even though simpler than in FEM, still presents a
considerable computational cost, especially in three-dimensional problems, in which surface elements are used.

Seeking to diminish the need of mesh even further, a new class of methods, called Mesh-free or Meshless,
started to be developed. This class of methods is based on the discretization of the structure through a random
distribution of nodes on its boundary and/or the domain. Simply put, no pre-established connection is required be-
tween the nodes in order to approximate the variables. Mesh-free methods present better results of stress recovery
and make modelling adaptive problems easier, since it is only necessary to change the position of nodes, without
restrictions of position or of displacements, which is not possible when using FEM.

Thus, aiming to obtain both the benefits of the boundary integral equation, which requires that only the
boundary is discretized, and of the Meshless methods, which do not require a mesh for the approximation of
variables, this work proposes the implementation of the shape functions of the Moving Least Squares (MLS) on
the boundary integral equations, therefore creating a new Boundary Mesh-Free Model (BMFM). At the end of the
work, BMFM was applied to a benchmark problem in order for its effectiveness to be assessed.
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2 Moving Least Squares

The Moving Least Squares (MLS) method is an approximation tool commonly used in Mesh-free methods
for the generation of the shape functions. It is based on three components: a complete set of polynomial basis
functions, a set of coefficients that are function of the space coordinates and a weight function of compact support
associated with each node, as presented by Atluri and Zhu [5].

2.1 MLS approximation

The MLS approximation for uh(x) for any point on a domain is given by

uh(x) =

n∑
i=1

pi(x)ai(x) = pT (x)a(x), (1)

in which a(x) is the vector of unknown coefficients that are functions of the space coordinates and pT (x) is a
vector of the complete monomial basis of order m.

2.2 Weight functions

The weight function wi(x) used to ponder the influence of each node based on the distance to a node i for the
unidimensional case is given by a quartic spline weight function, described as

wi(x) =

1− 6
(
di
ri

)2

+ 8
(
di
ri

)3

− 3
(
di
ri

)4

0 ≤ di ≤ ri
0 otherwise

, (2)

in which di = ‖x − xi‖ is the distance between the coordinates x = [x, y] and the node xi = [xi, yi]. The
parameter ri is the size of the compact support of the weight function, defined as a dimensionless parameter αs
multiplied by the greatest distance between neighbouring nodes. The compact support of a node is defined as the
region in which |wi(x) > 0|. The nodes whose compact support include the node i are the ones which participate
on the MLS approximation at the coordinate xi and form what is known as the definition domain of the node i.

2.3 Shape functions

The vector a(x) of eq. (1) is determined by minimizing the J(x) norm with respect to each term of a(x),
leading to

J(x) =
1

2

n∑
i=1

wi(x)[uh(x)− ûi]2 =
1

2

n∑
i=1

wi(x)[pT (xi)a(x)− ûi]2, (3)

in which ûi is the nodal parameter associated with the node i. The minimization of eq. (3) leads to

A(x)a(x) = B(x)û, (4)

in which

A(x) =

n∑
i=1

wi(x)p(x)pT (x), (5)

B(x) = [w1(x)p(x1), w2(x)p(x2), ..., wn(x)p(xn)], (6)

û = [û1, û2, ..., ûn]. (7)
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Solving eq. (4) for a(x) yields

a(x) = A−1(x)B(x)û. (8)

The shape functions φi(x) can then be written as

φi(x) =

m∑
j=1

pj(x)[A−1(x)B(x)]ji. (9)

Finally, the approximation functions of the MLS are rewritten as

uh(x) =

n∑
i=1

φi(x)ûi. (10)

To insure a well-defined approximation, it is necessary that n ≥ m for any coordinate x . Also, it is important
to notice that the MLS approximations are not nodal interpolants, which means that φi(x) 6= δij .

3 Boundary Integral Equations

3.1 Fundamental solution

The fundamental solution of the elastic field in continuum domains is the solution of Kelvin’s problem, that
is obtaining the displacements and traction forces in any point of an infinite domain with homogenous properties,
due to the action of a unitary concentrated load. For a two-dimensional problem in plane strain condition, the
fundamental solution of the elastic field can be written as

u∗lk =
1

8πµ(1− υ)

[
(3− 4υ)ln

(
1

r

)
δlk +

∂r

∂xl

∂r

∂xk

]
, (11)

in which u∗lk is the displacement at any point in the k direction when a unit load is applied at i in the l direction; µ
is the shear modulus; υ is Poisson’s ratio; r is the distance between i and any point; xl is the unitary vector in the
l direction and δlk is the Kronecker delta.

Applying the constitutive relations of the material in eq. (11), the traction forces are found as

p∗lk =
−1

4π(1− υ)r

[[
∂r

∂n
(1− 2υ) δlk + 2

∂r

∂xl

∂r

∂xk

]
+ (1− 2υ)

(
nl

∂r

∂xk
− nk

∂r

∂xl

)]
, (12)

in which p∗lk is the traction force at any point in the k direction when a unit load is applied at i in the l direction
and n is the normal vector to the surface of the domain.

3.2 Somigliana Boundary Integral Equations

Consider the static equilibrium equation, eq. (13), with a set of constrained displacements, eq. (14), and a
system of external forces, eq. (15):

σkj,k + bk = 0, (13)

uk = ūk on the boundary Γu, (14)

pk = σkjnj = p̄k on the boundary Γt, (15)
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in which σkj,j are the stress components, bk are the body force components, nj are the normal vector components,
pk are the traction force components, uk are the displacement components, (̄.) represent prescribed or known
values, and Γ = Γu + Γt is the complete boundary of the domain. Applying the weighted residual method to
eq. (13) and considering the fundamental solution as the weight leads to:

∫
Ω

(σkj,j + bk)u∗lkdΩ = 0. (16)

Integrating eq. (16) twice by parts and using both the constitutive relations of the material and the properties
of the fundamental solution, the Somigliana integral is obtained as:

uik +

∫
Γ

p∗lkukdΓ =

∫
Γ

u∗lkpkdΓ +

∫
Ω

u∗lkbkdΓ. (17)

Using eq. (17), it is possible to determine the displacement of any internal point i knowing only the traction
and body forces, the fundamental solution of the elastic field and the boundary constraints uk and pk. When the
source point is on the boundary, eq. (17) leads to:

cilku
i
k +

∫
Γ

p∗lkukdΓ =

∫
Γ

u∗lkpkdΓ +

∫
Ω

u∗lkbkdΓ. (18)

in which cilk is a constant. The analytical determination of cilk can be complicated, but its value can be easily
obtained using rigid body considerations, demonstrated in Brebbia and Dominguez [6].

4 Boundary Mesh-Free Model

This chapter introduces the proposed formulation for the Boundary Mesh-Free Model (BMFM), which is
based on the Boundary Node Method (BNM), presented by Kothnur et al. [7]. Both methods apply the MLS shape
functions on the Boundary Integral Equations. However, they differ in the way the final system of equations is
solved; the weight function; and the way in which the MLS is applied, since in the BNM the MLS is applied on
the entire boundary as a whole, while on the BMFM it is applied separately in each segment of integration, thus
allowing for a better representation of discontinuities on the variable fields.

Firstly, consider that the boundary Γ of a two-dimensional body is divided inN linear segments of integration
Γj . Each Γj segment is discretized with an arbitrary set of nodes nj linked by linear sub-segments, as represented
in Fig. 1. The end segments, shared by pairs of contiguous Γj segments, can either contain nodes or not. On each
boundary segment Γj , the MLS is applied independently for the approximation of the displacements, eq. (19), and
traction forces, eq. (20).

u = Φjû
j , (19)

p = Φj p̂
j , (20)

in which ûj e p̂j are, respectively, the displacement and the traction force parameters of the nj nodes of the
segment Γj ; u and p are vectors, each composed of two components and represent the displacements and traction
forces of any point within the segment Γj ; and Φj is the matrix of shape functions, of the order 2x2nj , of nodes
included in the definition domain of the field point x, expanded with zero entries for remaining nodes of the
segment. The body forces can also be represented as a vector of two components b . Finally, u∗ and p∗ represent
the 2x2 matrix of the fundamental solution and its derivative.

Hence, given the discretization of the boundary in N linear segments of integration and of the domain in M in-
ternal cells (necessary in problems in which there are body forces acting), and considering the MLS approximation,
eq. (18) can be rewritten as:

ciΦi
jû

j +

N∑
j=1

∫
Γj

p∗ΦjdΓûj =

N∑
j=1

∫
Γj

u∗ΦjdΓp̂j +

M∑
s=1

∫
Ωs

u∗bdΩ or (21)
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Γj

Real boundary
Discretized boundary
Segment delimitation

Node

1

Figure 1. BMFM discretization of the boundary Γ, defined with N segments Γj

(Ci + Hi)Û = GiP̂ + Bi, (22)

in which

Hi =

N∑
j=1

∫
Γj

p∗ΦjdΓ, (23)

Ci = ciΦi
j , (24)

Gi =

N∑
j=1

∫
Γj

u∗ΦjdΓ. (25)

Bi =

M∑
s=1

∫
Ωs

u∗bdΩ. (26)

Once eq. (22) is applied to all i boundary nodes and the numerical integration (using Gaussian quadrature for
nodes that are far from the singularity and the logarithmic Gaussian quadrature for those near the singularity) is
finished, the global system can be arranged as

(C + H)Û = GiP̂ + B, (27)

in which Û and P̂ represent the nodal parameters of displacement and traction force nodal of all the boundary
nodes, and H , C and G are the global coefficient matrixes. Since Û and P̂ do not represent the nodal approxi-
mation values, the imposition of boundary constraints is done by rearranging eq. (27), leading to


(C + H) −G

ΦÛ 0

0 ΦP̂


Û
P̂

 =


B

U

P

 (28)

in which ΦÛ and ΦP̂ are the matrixes of the MLS shape functions of the nodes with prescribed values of body
forces B, displacements U and of traction forces P , respectively.

Finally, the system of equations presented in eq. (28) can be solved for Û and P̂ . Once the nodal parameters
are known, it is possible to approximate u and p in any boundary point using eq. (10). Once the displacement of
any internal point is obtained using the Somigliana integral, eq. (17), the stresses can be calculated using Hooke’s
law.
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5 Numerical results

The material properties used in the benchmark were: E = 27 GPa and υ = 0.2. The BMFM results were
compared to the analytical ones and the average relative error (Em) was estimated using eq. (29). The points in
which uianalytical = 0 were not considered in the calculation of the error.

Em =
1

n

N∑
j=1

∣∣∣∣∣uianalytical − uiBMFM

uianalytical

∣∣∣∣∣ (29)

The benchmark was a plate with a circular hole under unidirectional tension of P=-30 MPa along the x direction
in the plane stress state, as seen in Fig. 2a. Due to symmetry, only a portion of the upper right quadrat of the plate
is considered, with b x b dimensions. The circle has a radius of a = 1, with b=5a. The analytical solutions of
the problem are given by eq. (30) and eq. (31). The nodal distribution is presented in Fig. 2b. The discretization
consisted in 51 nodes. The ends of all the segments, represented by an x, have two nodes, one belonging to each
neighbouring segment. A quadratic polynomial base was used (m=3) and αs = 3.7. The numerical results are
presented in Fig. 3 for the displacements and Fig. 4 for the stresses. It is clear by the graphs and their Em errors
that the BMFM obtained results extremely close to the analytical ones.

ux(r, θ) = 1+υ
E P

(
rcos
1+υ + 2

1+υ
a2

r cosθ + 1
2
a2

r cos3θ − 1
2
a4

r3 cos3θ
)

uy(r, θ) = 1+υ
E P

(
−υ
1+υ rsinθ − 1−υ

1+υ
a2

r sinθ + 1
2
a2

r sin3θ − 1
2
a4

r3 sin3θ
) , (30)


σxx(r, θ) = P

[
1− a2

r2

(
3
2cos2θ + cos4θ

)
+ 3

2
a4

r4 cos4θ
]

σyy(r, θ) = P
[
−a2r2

(
1
2cos2θ − cos4θ

)
− 3

2
a4

r4 cos4θ
]

σxy(r, θ) = P
[
−a2r2

(
1
2sin2θ − sin4θ

)
+ 3

2
a4

r4 sin4θ
] . (31)
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Figure 2. (a) Plate with a circular hole. Source: Oliveira Jr. [2] (b) BMFM discretization of the problem

6 Conclusions

The present work proposed a Boundary Mesh-Free Model (BMFM), which combines the advantages of the
Mesh-free methods (of not needing any sort of connectivity between nodes in order to approximate the variables)
and of the Boundary Integral Equations (of only requiring a discretization of the boundary), while using the shape
forms generated by the Moving Least Squares method. The proposed formulation was then applied to a benchmark
problem. In all cases, the BMFM approximation lead to small errors when compared to the analytical results, thus
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Figure 3. Displacements at θ = 45o (a) Ux, Em =0.20% (b) Uy , Em =0.40%
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Figure 4. Stresses at θ = 45o (a) σxx, Em=0.06% (b) σxy , Em =0.70% (c) σyy , Em =0.60%

proving its effectiveness. Therefore, it is clear that the BMFM presented here can be a reliable alternative to the
classic numerical method applied nowadays in elasticity problems.
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