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Abstract. Research efforts directed to advective-diffusive equation have resurfaced, strongly motivated by the
recent use of these mathematical models in pollutant dispersion applications, within the scope of environmental
engineering. In the context of the Boundary Element Method (BEM), the treatment of the advective transport term
characterizes a technical challenge. The BEM classic formulation, which uses the problem’s inherent fundamental
solution, is capable of handling high Peclet numbers phenomena, however it is limited to uniform velocity fields.
In parallel, the Dual Reciprocity technique, which is more robust and versatile, offers flexibility in describing
variable flow velocity fields, nevertheless it remains restricted to representing creeping flows. The recent Direct
Interpolation technique provides a balanced alternative to the two previous approaches, as it is able to deal with
variable velocity fields, such as Dual Reciprocity, despite that, it maintains stability up to moderate Peclet number.
This article aims to expose a preliminary performance of the of Direct Interpolation technique comparing it to
the well-established Dual Reciprocity approach, in physical situations with spatial variation of the velocity field,
while the effects of advection are gradually increased. Focusing on determining the relative performance of the
formulations, in terms of precision and stability, the numerical results are evaluated using benchmark problems
with widely known analytical solutions.

Keywords: Boundary Element Method, Direct Interpolation technique, Dual Reciprocity technique, Advective-
Diffusive Model, Moderate Peclet Number, Variable Velocity Fields.

1 Introduction

In the context of the Generalized Scalar Field Equation, [1] advection-diffusion problems are relevant for
several engineering and science phenomena, with emphasis on applications related to fluid dynamics, thermal
convection and mass transfer. In terms of computational thermofluids, the mathematical nature of the convective
transport term added to the coupled structure of the governing equations, imposes a series of challenges on the
performance of numerical methods, among them, the Boundary Element Method.

The advances consolidated by the Boundary Element Method in dealing with advection-diffusion models
are substantial, since when its classic formulation, based on the fundamental solution related to the problem, [2]
was proposed. This formulation treats properly physical situations that shows advection dominance[3], however it
proves unable to represent variable velocity fields. First, it is necessary to highlight the first attempts to overcome
this limitations of the method using variants of the Laplace fundamental solution [4] and also with a symmetrization
proposal of the differential operator of the problem, [5] however, both did not obtain the expected success.

After the proposal of the dual reciprocity technique (DRBEM) [6], the boundary element method gains ver-
satility and robustness of application in face of scalar field problems, in general. In the specific case of advective-
diffusive problems, the technique is capable of dealing consistently with variable velocity fields, but it presents
instability when the effects of advection become dominant, maintaining reasonable results only for small Peclet
numbers. [7] [8]
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Following the development towards the state of the art, the direct interpolation technique (DIBEM) [9] is
proposed, based on an approximation of the entire kernel of the domain integral, unlike the dual reciprocity, which
approximates only part of the kernel. The proposal of this technique, which resembles a classic interpolation
procedure, has already been applied to relevant two-dimensional models of scalar field such as Poisson [9] and
Helmholtz [10] problems, presenting superior results in comparison to dual reciprocity technique. In contrast to
the dual reciprocity approach, there is no need to generate auxiliary matrices with DIBEM [6], however this new
proposal is more sensitive to internal poles refinement. [11] [12]

More recently, a regularization procedure has been proposed [13] to be used simultaneously with the direct
interpolation technique, and has presented satisfactory results on eigenvalue problems generated by Helmholtz
Equation. The central concept is based on the elimination of the domain integral singularity through a simple
algebraic sum similar to the regularization of Hadamard [14], which, in turn, allows an equality of coordinates
between source, field and base interpolation points, significantly simplifying data entry and facilitating codification.

In this article, the performance of the DIBEM technique is tested on two-dimensional advective-diffusive
problems with variable velocity field. The work aims to determine the robustness of the recent formulation to treat
differential equations with variable coefficients and also to determine the stability of the technique in terms of
the magnitude of the advective effects. The performance evaluation of DIBEM is based on comparisons with the
classic DRBEM formulation and well-known analytical solutions.

2 Mathematical modelling

The mathematical description of an advective-diffusive problem with variable velocities is reasonably more
complex than models which consider constant velocities, due to the accounting of the compressibility effects.
According to the principles of continuum mechanics [15], in the case of a one-dimensional problem, compressive,
in steady state, in a non-homogeneous medium and disregarding the viscous dissipation effects, the following
governing equation is originated from the law of energy conservation [16].

d

dx

(
k(x)

du

dx

)
= ρcpv

du

dx
+ p

dv

dx
(1)

In Eq. (1), the coefficient k(x) represents a function of thermal conductivity in a non-homogeneous medium,
ρ the specific mass of the fluid, v the velocity in the x axis, cp a thermodynamic property of specific heat and p the
flow’s pressure field. The unidimensional velocity field has a linear structure, whereas the conductivity function
possesses a mathematically convenient structure, designed to accomplish a transformation of variables [17], which
is shown in sequence, such as those displayed by Eq. (2), where C is a constant of adjustment and m is a constant
associated with the intensity of the advective effects.

v = −mx k = ρcpvx+
ρvmx2

C
(2)

The use of an adequate transformation of variables [17] in terms of u′, that is inserted in the expression of
energy balance in Eq. (1) and after proper algebraic manipulation, as seen on Loeffler and Dan [20], it devises a
transformed governing equation, displayed by (3), which holds a classic advective-diffusive structure.

d2u′

dx2
= − m

L+mx

du′

dx
= v(x)

du′

dx
(3)

The performance of the boundary element method is already known regarding some of its formulations for
the classic advective-diffusive model, which is represented by Eq. (3). Massaro [21] has extensively tested, in a
very meticulous work, the performance of the Dual Reciprocity formulation (DRM) in two-dimensional advective-
diffusive problems. Dan et al. [17] tests in his work the performance of the DRM, Quasi-Dual (QDRM) [22] and
also a formulation which is based on a harmonic transformation (HTT) in advective-diffusive problems with vari-
able velocity fields. Pinheiro [23] applied the recent direct interpolation (DIBEM) technique in two-dimensional
advective-diffusive problems with constant velocity fields. At last, there is still a demand for an evaluation of the
behavior of the DIBEM formulation in cases where the velocity field is variable, which is the main motivation for
this current article.
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3 Direct Interpolation Method

In this section a brief formulation of the Direct Interpolation Method of Boundary Elements (DIBEM) for
advective-diffusive problems with variable velocity fields is exposed, which includes the effects of compressibility.
In order to achieve a more elegant and algebraically cleaner presentation, the governing Eq. (3) is written in index
notation.

u,ii = viu,i (4)

In Eq. (4), the left side represents the diffusive effects (DS), while the right side represents the accounting of
the advection, where the velocity field vi carries the scalar field u. The treatment via BEM on the diffusive side is
already widely known in the literature [24] and its inverse integral formulation corresponds to the Eq. (5) below.

DS = c(ξ)u(ξ) +

∫
Γ

u(X)q∗(ξ,X)dΓ −
∫

Γ

q(X)u∗(ξ,X)dΓ (5)

The domain integral, which quantifies the advective part (AS) has, a priori, a more challenging treatment,
whose mathematical structure is shown below. Each portion of the function in the integrands is kept explicit in
order to promote a deeper consistency in exposition.

AS =

∫
Ω

vi(X)u,i(X)u∗(ξ;X)dΩ (6)

The application of integration by parts in Eq. (6), in addition to the ensuing use of the Divergence Theorem
[25] in order to move the integrals to the boundary Γ(X) lead to the following equation.

AS =

∫
Γ

ni(X)vi(X)u(X)u∗(ξ;X)dΓ −
∫

Ω

vi(X)u∗,i(ξ;X)u(X)dΩ −
∫

Ω

vi,i(X)u∗(ξ;X)u(X)dΩ (7)

In (7), the first integral is already written in terms of the boundary Γ(X), there still is, however, a domain
integral where the velocity fields vi and another one, which is also written in Ω(X) whose domain is composed
by the divergent of the velocity fields vi,i that is connected to the compressibility effects of the flow [19]. At this
point, similarly to the procedures used in an incompressive formulation whose details can be examined in [23], a
regularization process is conducted in the second integral of Eq. (7), which is analogous to Hadamard’s proposal
[14]. This procedure already integrates the DIBEM’s standard formulation and can also be viewed in previously
stablished works [13].

AS =

∫
Γ

ni(X)vi(X)u(X)u∗(ξ;X)dΓ −
∫

Ω

vi(X)u∗,i(ξ;X) [u(X) − u(ξ)] dΩ

−
∫

Ω

vi,i(X)u∗(ξ;X) [u(X) − u(ξ)] dΩ −
∫

Ω

vi(X)u∗,i(ξ;X)u(ξ)dΩ −
∫

Ω

vi,i(X)u∗(ξ;X)u(ξ)dΩ (8)

As of now, a second integration by parts can be performed, this time in the last integral of Eq. (8), aiming to
generate two integrals that are expressed in regards to u(ξ). The first one in the right side of Eq. (9) can be taken
to the boundary and the second one cancels itself with the last before one in the right side of Eq. (8).

∫
Ω

vi,i(X)u∗(ξ;X)u(ξ)dΩ = u(ξ)

∫
Ω

[vi(X)u∗(ξ;X)],idΩ −
∫

Ω

vi(X)u∗,i(ξ;X)u(ξ)dΩ (9)

The mathematical structure of Eq. (9) reveals that both regularizations performed generate more than one
boundary integral, which leaves the approximations of the regularized terms to the use of radial base functions.
The final integral formulation on the advective side of a compressive case can be synthetized as in Eq. (10) below.
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AS =

∫
Γ

ni(X)vi(X)u(X)u∗(ξ;X)dΓ − u(ξ)

∫
Γ

ni(X)vi(X)u(X)u∗(ξ;X)dΓ

+

∫
Ω

vi(X)u∗,i(ξ;X) [u(X) − u(ξ)] dΩ −
∫

Ω

vi,i(X)u∗(ξ;X) [u(X) − u(ξ)] dΩ (10)

4 Numerical Simulation

This case study aims to allow for a comparison between the performances of the DIBEM and DRBEM
formulations in cases where the velocity field varies spatially. The selected problem is shown as follows with its
respective boundary conditions. In order to test DIBEM’s new formulation in compressible problems, a square
domain with unitary measures was chosen, with the following boundary conditions and hydrodynamics imposed
in Figure 1.
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Figure 1. Computational Domain

In this particular case, although the geometry seems to be two-dimensional, given the structure of the bound-
ary conditions, the problem behaves as a one-dimensional. The originally linear velocity field displayed on Eq.
(2), it is developed into a field mathematically imposed by the transformation of variables, whose structure is also
exposed in Eq. (3) and, for the sake of convenience, in the Figure 1 above.

The approach to the problem is carried out by the DIBEM formulation, which is compared against the well-
known DRBEM formulation. First, it is shown below the convergence of the aforementioned formulations in
regards to the number of boundary elements (BE) and internal poles (IP). In the left graph, 2 (a), fixa-se uma
malha de contorno com 64BE e executa-se o refinamento , a boundary mesh with 64BE is fixed, whereas a gradual
refinement of the internal points mesh is performed.
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Figure 2. Sensitivity Analysis: (a) Internal Points (b) Boundary Elements
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The Figure 2 (a) shows that the DRBEM performs better when fewer poles are used, which is reasonable
considering that the DRBEM is less dependent on the amount of poles, due to the fact that only a part of the
domain integral’s core is interpolated by radial functions. Notwithstanding, the DIBEM by interpolating the entire
core of the advective term, it requires a larger amount of poles.

The graph in Figure 2 (a) reveals that in fact both the boundary element formulations tested are, in fact,
very sensitive to the refinement of the internal poles in the problem in question. It is worth highlighting that in
advective-diffusive problems with constant velocity, the DRM method does not exhibit such fine sensitivity in
regards to this mesh parameter, which in this case probably occurs due to the variation in the velocity field. In
addition to it, the DIBEM formulation curve displays a peculiar uprising in a mesh with 25PI, which is probably
due to an unfavorable spatial distribution of the internal nodes of this mesh. This type of behavior has already been
observed in the solution of other cases, such as the calculation of natural frequencies in Helmholtz problems and it
is linked to the existence of an optimal positioning of a given amount of internal points, which a priori cannot be
quantified. In more refined meshes, the DIBEM demonstrates a slightly smaller boundary potentials average error
than the DRBEM.

On the left side, Figure 2 (b) exposes the analysis of the second convergence parameter, which consists in the
refinement of the boundary elements mesh, while maintaining the internal nodes mesh in 49IP. The graph reveals
that the refinement of the amount of elements in the discretization of the boundary, which promotes a monotonic
fall of the errors in more refined meshes in both formulations, with slight lower levels in DRBEM. Once confirmed
the convergence of both BEM formulations tested for the problem in question, it is possible to evaluate the behavior
of the same parameters in regards to the advective effects of the flow. For this purpose, Peclet’s number is gradually
increased, while the mesh is fixed on 80BE/81IP, the behavior of the error of the boundary calculated variables is
then exhibited on the following Figure 4.

As seen on the solution of Poisson and Helmholtz problems [10], [9], obtaining good results on DIBEM
stems from an equilibrium between the amount of boundary nodal points and the amount of poles. Whereas for the
DRBEM, as already stated, it is less dependent on the internal interpolation, therefore its results tend to be superior
in analysis which a lower amount of poles are fixed and the mesh is more refined.

The next simulations attempt to better examine DIBEM’s pronounced sensitivity to the positioning of the
internal poles. Considering the two distributions of internal interpolating points, as illustrated by Figure 3.
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Figure 3. Distribution of Internal Points (a) Type I (b) Type II

In this new test, the parameter m is expanded from one to five and the results are exhibited in the following
figure. It is observed that the curves, each one referring to a single mesh, display different performances. For
m = 5, the configuration returned an error of 0.62%, while for the other one, it generated an error of 0, 27%. Both
error values are low, but the difference is still substantial, especially when considered that DRBEM’s results are
almost the same. The fact that mesh (b) performed better is given to the softer gradation of the mesh, where there
is a higher density of internal interpolating points. A priori, the most indicated disposition of poles is the most
uniform as possible, since there is no way to determine the exact optimal position of the poles.
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Figure 4. Advection Effects Parametric Analysis - 80BE/81IP

Figure 4 reveals low levels of error for both formulations tested, which can be interpreted as a reasonable
analogous behavior. The precision of the DRBEM seems to be slightly superior in this problem when compared
to the DIBEM formulation. In this regard, the direct interpolation is a good alternative when analyzing numerical
compressive problems with low and moderated Peclet numbers.

5 Conclusions

In general, it is observed a good performance of both techniques tested using the proposed advective-diffusive
model with compressive flow. The magnitude of the average errors were kept within a reasonable margin of most
engineering applications, even for moderated Peclet numbers, which signals more prominent advection effects in
comparison to the diffusive effects. As for the convergence in regards to the mesh parameters, a sensitivity to the
internal poles is suggested, which is atypical to the DRBEM technique, given that this technique is not particularly
influenced by this parameter in cases with uniform velocity fields. The local variation of the velocity field with
space seems to influence the manner in which the Dual Reciprocity technique responds to the refinement of the
internal poles of the mesh. Nevertheless, the DIBEM formulation exhibits great sensitivity to the refinement of
the internal poles, which is characteristic of its performance in other scalar field problems. Still within the scope
of convergence, no substantial response to the difference in the number of boundary elements was observed, both
techniques behaved in a very similar manner to the refinement of the mesh.

In the parametric analysis regarding the Peclet number, the DRBEM technique displays slightly superior
results, except for a single value, for which DIBEM exhibits better precision. This trend is distinct from the results
observed in tests with constant velocity fields, in which the DIBEM performs better. It is worth highlighting that the
results obtained from the DIBEM technique in this problem, they vary significantly in relation to the distribution
of the internal poles, which requires a deeper and standardized investigation.

At last, it is possible to ascertain that the Direct Interpolation technique is an efficient and precise alternative
in treating the proposed variable velocity field problem. The exposed integral formulation extends the scope of
application of the DIBEM techniques. In addition to it, there is also a demand for more systemic tests in two and
three-dimensional problems with other types of complexities associated.
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