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Abstract. As hitherto proposed in the technical literature, the boundary element modelling of cracks is best carried
out resorting to a hypersingular fundamental solution. A more natural approach might rely on the direct representa-
tion of the crack tip singularity, as already proposed in the frame of the hybrid boundary element method. However,
recent mathematical assessments indicate that the conventional boundary element formulation – based on Kelvin’s
fundamental solution – is in fact able to precisely represent high stress gradients and deal with extremely convo-
luted topologies. We propose in this paper that independently of configuration a cracked structure be geometrically
represented as it would appear in real-world laboratory experiments, with crack openings in the range of microm-
eters or less. Owing to a newly developed integration scheme for two-dimensional problems, machine precision
evaluation of all quantities may be achieved and stress results consistently evaluated at interior points arbitrarily
close to crack tips. Importantly, no artificial topological issues are introduced and linear algebra conditioning is
kept under control. Some numerical illustrations show that highly accurate results are obtained for cracks rep-
resented with just a few quadratic, generally curved, boundary elements and a few Gauss-Legendre integration
points per element. The numerical evaluation of the J-integral turns out to be straightforward and actually the most
reliable means of obtaining stress intensity factors.
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1 Introduction

Fracture mechanics phenomena have being systematically investigated since the seminal studies by Inglis
[1] in the year 1913, who proposed the analysis of stress concentration around straight cracks in plane plates.
Griffith [2] introduced in 1920 thermodynamics concepts to formulate a fracture mechanics theory based on energy
balance. Later on, Irwin extended Griffith’s ideas to metals and proposed the concept of energy release rate [3]
and, on the basis of the developments by Westergaard [4], also the stress intensity factor (SIF) [5] as a measure to
be definitely considered in the fracture mechanics theory. In the year 1968, Rice [6] showed that the energy release
rate may be obtained by means of a line integral, for two-dimensional (2D) problems, which became known at
the J-integral. The application of these concepts to a practical problem depends of the adequate evaluation of the
stress state around a crack tip. The first boundary element development in the field may be attributed to Cruse in
the year 1971 [7]. However, owing to space restrictions we should not carry out a literature review on the subject.

The second author and previous collaborators have already in part successfully arrived at an attempt on the
basis of the hybrid boundary element method to adequately represent the stress field around a crack tip in terms of
Williams’ series as well as of generalizations of Westergaard’s stress functions [8–10].

More recently, a consistent formulation – actually a both conceptually and numerically long due correction
– of the conventional, collocation boundary element method (CBEM) was proposed [11, 12], according to which
a convergence theorem could be envisaged and the evaluation of results has turned out achievable within ma-
chine precision for internal points arbitrarily close to an elastic body’s boundary regardless of topology issues.
The numerical implementation considers arbitrarily high-order boundary elements for 2D bodies of any shape and
topology as well as flat boundary elements of a three-dimensional body. The application of this consistent formu-
lation to 2D fracture mechanics problems was the subject of the first author’s M.Sc. thesis [13], which showed that
a generically curved crack may be numerically simulated exactly as if in a real-life experimentation, with the faces
distinctly modelled for arbitrarily small openings as long as the continuum mechanics is dimmed applicable.
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2 The consistent boundary element method

As applied to an elastostatics problem, boundary nodal displacements d and traction attributes t are interre-
lated by means of the single-layer and double-layer potential matrices G and H as

H(d− dp) = G(t− tp) (1)

In this equation, it is also considered that body forces may be at least approximately expressed in terms of equiva-
lent nodal displacements dp and boundary traction parameters tp, which is not always a simple task [11–13]. This
equation turns out to be an application of Somigliana’s identity that converts boundary data into domain displace-
ments. Whenever the boundary data are inaccurate, as the result of approximated values of d ≡ df and t ≡ d`
for a given problem as well as of the piecewise boundary interpolation, an error term ε should actually be added to
this equation [11, 12]. The matrices G and H are expressed in terms of the boundary integrals

Gs` =

∫
Γ

u∗is(x− xs)ti`(x)dΓ(x) (2)

Hsf =

∫
Γ

σ∗
jis(x− xs)nj(x) uif (x)dΓ(x), (3)

where u∗is(x − xs) and σ∗
jis(x − xs) are the displacement and stress (Kelvin’s) fundamental solutions of the

elastic problem – which have global support – and Γ(x) is the integration boundary. In the above equation and in
the following, repeated indices mean summation. The vector x ≡ (x, y, z) stands for the Cartesian coordinates
of a given point, in the case a field point, and nj(x(ξ, η)) are the Cartesian components of the unity outward
vector ~n(x(ξ, η)) to Γ(x(ξ, η)), in terms of parametric variables (ξ, η), for a general 3D problem. The subscript s
refers to a given source node (at which the unit point force of the singular fundamental solution is applied) and the
subscripts f (which stands for field) and ` (also a field reference) indicate respectively to which node or surface point
the displacement-interpolation function uif (x(ξ, η)) or the traction-interpolation function ti`(x(ξ, η)) -– both with
local support -– are referred. uif (x(ξ, η)) comes from the piecewise interpolation of displacements ui(x(ξ, η))
along the boundary, ui(x) = uif (x(ξ, η))df , where df are the nodal displacements. In a practical finite element or
boundary element implementation, uif (x(ξ, η)) is actually represented by polynomial shape functions Nf (ξ, η):

uif (x(ξ, η)) =

{
Nf (ξ, η) if i and f refer to the same Cartesian direction
0 otherwise

(4)

In the expression of H, the Jacobian used in the definition of nj(x(ξ, η)) cancels out with the Jacobian of dΓ(x) =
|J(ξ, η)| dξdη. For the single-layer potential matrix G, it is proposed that the usual (as found in the literature)
interpolation polynomials ti` of traction forces in eq. (2) be replaced with

ti`(x(ξ, η)) =
|J |(at `)

|J |

{
N`(ξ, η) if i and ` refer to the same Cartesian direction
0 otherwise

(5)

where |J |(at `) is the value of the Jacobian at the point characterized by the subscript ` [11, 12]. Nothing changes
formally in the development of the BEM for curved boundary segments (and, of course, nothing changes numer-
ically for the trivial cases of straight or flat boundary segments), except that the evaluation of G becomes much
easier and actually more consistent as compared to proposed implementations given in the technical literature. In
fact, |J | cancels out in the product ti`dΓ in eq. (2) for ti` defined as suggested, and the integrand of G becomes a
polynomial that multiplies the assumed kernel u∗is.

2.1 A brief outline of the numerical integration issues

As proposed above, the integrands in eq. (2) are given as products of the kernels with polynomial terms
regardless the element order for either 2D or 3D problems. For 2D problems, it has been shown that boundary
elements of any shape may be dealt with in a unified procedure that enables machine precision results for the
evaluation not only of G and H but also for displacement and stress results at internal points – in the latter case
allowing for eventual quasi hypersingularities – no matter how close source and field points may be to each other.

The outline of the numerical evaluation procedures is out of scope in the present developments, but it may
be worth illustrating in Fig. 1 the kinds of singularity that must be taken into account. For the cubic element of
the figure, given in terms of the parametric variable ε ∈ [0, 1], an actual singularity occurs for the source point at
A, thus for 0 ≤ ε ≤ 1. For the source point at B, represented by ε > 1 but still close to the integration interval,
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the integrals of eq. (2) must be dealt with for the special case of a real quasi-singularity. On the other hand,
if the source point is at C, its complex location ε = a ± ib must be found for the correct consideration of the
corresponding procedure [12, 14].



a 



( ) ( ) ( )r w r   

A

B

C

0  1 

1 

0 1 

a ib  

Figure 1. Illustration of actual (A) and real (B) or complex (C) quasi singularity poles

3 Illustrative numerical assessments of two fracture mechanics problems

A few plane stress problems are assessed next. Unless otherwise specified, we consider a material with
transversal elasticity modulus G = 80, 000 units of stress and Poisson’s ratio ν = 0.2. All singularity and quasi-
singularity cases are evaluated within machine precision, but the use of ng = 4 Gaussian points for the regular
integrals leads to final precision of results that cannot be better than 10−7. In fact, several numerical assessments
conducted using 4, 6 and 8 Gaussian points combined with 20, 30 and 40 precision digits implemented in the
Maple software showed that all results of interest could be obtained within a precision of 10−5 for ng = 4 points
and 30 digits [13], which will be used here for all regular integrals along generally curved quadratic elements.
Stress intensity factors are evaluated in terms of J-integrals along circles centred at the crack tip, subdivided into
10 sectors and also using ng = 4 Gaussian points per sector.

3.1 Analysis of an elliptic crack in the open domain

The simplest and best representative case of fracture mechanics is the one of a straight crack in the open
domain for a constant stress state applied transversally to the crack at infinity, with stress disturbances to be
assessed at the crack’s tips and mode I stress intensity factor to be evaluated. We represent this crack with length
2a = 2 units and already as an elliptic opening with 2b = 2× 10−3 units, which would only exactly correspond to
the problem originally proposed and solved by Westergaard [4] in the limit case of b→ 0.

In eq. (1), this case corresponds to a far field stress state σp
ij evaluated as traction parameters tp and nodal

displacements dp = 0 at the crack borders. Moreover, the occurrence of the crack implies that t = 0, so that eq.
(1) directly leads to the solution of the crack borders’ nodal displacements d as

d = −H−1Gtp (6)

since H is non-singular for an open domain problem, although we might expect some ill-conditioning due to the
proximity of the crack faces: the present numerical implementation has brilliantly passed this test [13]. After
evaluation of d, results at internal points are obtained by using Somigliana’s identity, with final stress values given
as the superposition with the applied far-field particular solution σp

ij .
A convergence study is shown in Fig. 2 for errors in the numerical evaluation of the stress intensity factor as

compared with the analytical result KI = σ
√
πa ≈ 1, 7724539, for different numbers of quadratic elements along

the crack faces. Since the implemented code does not take advantage of the double symmetry of the problem,
the number of elements per half crack face is a quarter of the indicated values. The node spacing along the crack
varies geometrically from crack tip to the center according to the indicated ratios, for the three cases analysed.
We see that agglutinating the nodes close to the crack tip (ratio = 1.5) does not necessarily lead to better results,
which are for ratio = 1.35, with errors tending to 10−4. This is mainly related to the geometric approximation
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of the assumed elliptic initial crack shape in terms of successive quadratic segments, which provoke an undesired
angulation between adjacent elements instead of a smooth surface. In order to assess how the size of the elliptic
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Figure 2. Errors in the evaluation of SIF values for the crack with initial opening 2× 10−3

minor axis affects results, Fig. 3 shows relative errors in the evaluation of SIFs for b = 10−3, 10−4 and 10−5 units
for different ratios in the geometric increase of node spacing from tip to middle of the crack. There is a tendency to
arrive at the SIF for the fracture mechanics theory, although the angulation between adjacent elements causes too
much disturbance: best result is the error of about 10−6 for opening b = 10−5 with internode space increasint ratio
1.1. The angulation between adjacent quadratic elements, as implemented in this simulation, may be measured in
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Figure 3. Errors in the evaluation of SIF values for the crack with different assumed initial openings

terms of how much the discontinuous part of the matrix H for an interelement node differs from 0.5, which is the
value for a smooth surface. Since all singular evaluations are carried out within machine precision, this deviation
from 0.5 is a reliable account of the introduced geometry errors. This is shown in Fig. 4 for two different internodes
space increasing ratios in the case of the half opening b = 10−5 and a total of 60 quadratic elements in the crack
discretization, which corresponds to 31 nodes from tip to a face’s middle (the values for the internal nodes, given
by even numbers, are of course exactly 0.5). The geometry errors are not large, in general, and smaller for nodes
not too differently spaced, but larger at the crack’s tip, where such discrepancy should better be avoided. The
conclusion is that results in the values of the SIF cannot be expected to improve unless this angulation issue is
adequately solved. There is indeed a study in progress on this subject with promising initial results.

Figure 5(a) presents normal stress results at 40 points spaced at geometrically increasing distances r/a along
a straight line extending from the crack tip, as obtained for the discretization with b = 10−3 and 60 elements with
internodes spacing ratio 1.35, and compared with the reference values according to Westegaard’s developments. It
is worth observing the 1/

√
r singularity tendency as the points get close to the crack tip. The comparison with the

target results are better displayed in terms of the error norm of Fig 5(b), where both vertical and horizontal axes
are in logarithmic scale. As assessed by Amaral Neto [13] for this case of an immersed straight crack as well as
for some other crack configurations, the SIF results are actually dependent of the assumed Poisson’s ratio, a fact
that is in general ignored in the technical literature, maybe because the numerical differences are smaller than the
built-in errors of the hitherto implemented simulations.
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Node number along the crack face
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Figure 4. Geometry discretization errors measured in terms of the discontinous part of H
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Figure 5. Normal stress values (a) and relative errors (b) at points along a line extending from the crack tip

3.2 Analysis of an inclined edge crack in a rectangular plate

The rectangular plate with an inclined edge crack of Fig. 6 (drawing not in scale) was examined by Amaral
Neto [13] for a longitudinal constant load and edge openings 2 × 10−3, as indicated, as well as 2 × 10−4 and
2 × 10−5. The discretization of the four external edges consisted of a fixed number of 80 uniformly distributed
quadratic elements. In the numerical analyses, the numbers of quadratic elements along each crack face varied from
one to 15 and several internode space increasing ratios from crack tip to edge were applied, as described for the
previous example. Overall results tended to be better when such ratios were not too large, but just about 1.2 to 1.3.
The obtained results were quite insensitive to discretizations with more than four elements along each crack face.
Stress intensity factor results were compared with the ones given by Tada and Irwin [15], whith difference errors of
about 10−2 to 10−3 and more affected (although always slightly) by different Poisson’s ratio than observed for the
previous example. It is worth observing that our model is not exactly the one in Tada and Irwin’s book, as we are
considering a finite, although small, crack opening. Moreover, our results are likely to be more reliable, as there is
no analytical solution for this problem.

40

10

1.0

1.0

0.002

20

Figure 6. Inclined edge crack in a rectangular plate (drawing not in scale).

Since this is the case of a finite elastic body, a very objetive assessment of the implemented numerical solution
may be undertaken. In fact, as already used by second author in several numerical investigations, Amaral Neto
[13] submitted the plate of Fig. 6 to a family of displacement polynomials given of degrees one, two, three, four
and five, a total of 20 polynomial fields (four for each degree) that are non-singular fundamental solutions of the
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proposed elastic problem. For each polynomial, boundary displacements and traction forces can be evaluated and
inserted into eq. (1) in order to check its accuracy both as stated in this equation as well as in terms of the system
solution indicated in eq. (6) – after duly compensating for rigid body displacements [13]. In fact, while shear
discretization accuracy can be assessed by means of eq. (1), the matrix inversion in eq. (6) makes possible to
measure the eventual onset of ill-conditioning.

According to Dumont [14], the numerical results are expected to be accurate within machine precision for
linear displacement fields. (It would be the case for quadratic displacement fields, as well, if the borders were
given by straight segments, which is strictly speaking not the case here, as the crack face nodes are not evenly
spaced inside a quadratic boundary element.) Since the regular parts of the integrals are evaluated numerically, the
expected global results cannot be more accurate than the quadratures allow for. Figure 7 shows error results for eq.
(1), |Gtpol −Hdpol|, as well as for (6), |dpol − dnum|, in the cases of crack openings 2 · 10−3, on the left, and
2 · 10−5, using 4, 6 and 8 quadrature points. The horizontal axes show average results for the four polynomials
of each degree used in the analyses. The results for the first-degree polynomials – for which analytical results
are expected – are multiplied by some constants in order to keep the graphics within a reasonable interval. It is
expected that errors increase as the polynomial degrees increase. In fact, as the quintic polynomials, for instance,
give rise to overall high stress gradients, the displayed results are a threshold of the accuracy we should expect in
the fracture mechanics assessments. It is worth observing some ill-conditioning related to eq. (6) – which increases
as the crack opening gets smaller – but way below the approximation errors.
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Figure 7. Errors related to eqs. (1)and (6), for the plate of Fig. 6 with crack openings 2 · 10−3 (a) and 2 · 10−5 (b)

4 Conclusions and prospective works

It has been shown that a code implementation of the consistent, collocation boundary element method can be
used to analyze crack configurations of the 2D fracture mechanics as they are expected to exist in real life. In this
code, a unified integration scheme deals with singularities and quasi-singularities of an arbitrary degree of severity,
as source and field points can be infinitely close to each other, the only limitation being the machine’s capability
of representing numbers – thus avoiding round-off errors. One might think of working with a code that combines
Kelvin’s singular and hypersingular fundamental solutions to model a crack’s face and its oposite, respectively, a
classical usage to represent cracks of zero opening. The present code actually already allows for such simulation,
as the evaluation of stress results at internal points deals with quasi hypersingularities within machine precision.
However, modelling real crack configurations opens up the possibility of implementing a procedure to investigate
the crack propagation phenomenon from its onset and during successive steps of the crack becoming wider and
larger – and eventually kinking and bifurcating. The combination with cohesive elements is also quite natural in
the present code implementation.

An issue investigated in the example of Section 3.1 are spurious angulations between adjacent elements in
the attempt to represent an elliptic geometry as a succession of quadratic elements – aggravated at the proximity
of the crack tip, as some stress disturbance is unwillingly introduced. (An isogeometric implementation is not a
solution, as the consistent BEM must rely on an isoparametric formulation [12]). The main concern is however
how to assume the shape of an unloaded crack in a real sample other than making local measurements and just
trying to have representative models. Westergaard proposed a straight crack with initial zero opening, for which
a far-field constant stress state is analytically shown to cause an elliptic opening. This is the reason to suppose
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in Section 3.1 that the unloaded straight crack is elliptic with minor axis tending to zero. In the configuration for
a = 10−3 the distance between opposite nodes closest to the crack tip is as small as 1.8× 10−5 for the model with
60 boundary elements. The assumption of a straight edge crack of Fig. 6 seems quite reasonable, but the linear
narrowing from the edge to the tip is also in need of justification. In such a case there were no spurious angulations
and the crack tip is very narrow indeed: for the configuration with the indicated opening 2 × 10−3 and a total of
30 boundary elements the distance between opposite nodes closest to the crack tip is 8.6× 10−8, which is already
going beyound the continuous mechanics assumptions but is still doable mathematically.

A possibility that is already under investigation is the modelling of the crack as arbitrarily close, parallel (or
not) interfaces interconnected by curved transition elements that preserve surface smoothness wherever required
(this is done by just adjusting the loci of the internal element nodes). The simplest case of the straight crack of
Section 3.1 would be modelled as in Fig. 8, for quadratic, cubic or quartic boundary elements.

Figure 8. Newly proposed models of a straight crack with quadratic, cubic and quartic boundary elements

The model proposed in this figure seems to enable a friendlier manipulation of the numerical simulations as
a crack propagates and eventually kinks or bifurcates. This is the subject of a research work in progress.
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