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Abstract. During a drilling operation of oil and gas wellbores it is sometimes necessary to stop fluid pumping,
and this causes the cuttings to settle towards the bottom. To avoid cuttings from accumulating downhole, drilling
fluids are designed for gelification, which in rheologic terms means the build-up of yield stress in a thixotropic
material. To study this phenomenon, the lattice Boltzmann method (LBM) is utilized to solve fluid flow while the
immersed boundary method (IBM) is employed to solve the motion of a spherical particle. Thixotropy is modeled
with a structural parameter model, whose scalar is associated with the fluid’s yield stress. The structural parameter
is transported by the convection-diffusion equation in the mesoscopic scale. The focus of the present work is on
the effects of model parameters on the trajectory and terminal velocity of a spherical particle released from the rest
in a thixotropic fluid initially fully unstructured. Considering that the fluid starts to age as soon as the sphere is
released, the particle velocity decreases because of the increased yield stress and after a while reaches its terminal
velocity. If the maximum yield stress is increased above a threshold, the particle is not capable to break through
the new structured fluid and ceases to move after some time, staying suspended in the gelified fluid.
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1 Introduction

The interaction between a fluid medium and a settling particle is a critical process for some industries, such as
in drilling of oil and gas wellbores where the removed cuttings are transported to the surface by the drilling fluids.
These fluids often exhibit thixotropy, a time-dependent property on which the fluid has a reduction in the viscosity
due to the action of shear during a period[1]. This allows the fluid to be easily pumped when the at steady-state
and reduce the terminal velocity of the cuttings in the case of stop circulation. Another important property that
drilling fluids may present is the viscoplasticity. Viscoplastic fluids have yield stress, which corresponds to the
minimal stress for the fluid start to flow [2]. This also applies to the settling phenomenon: if the particle does not
have enough weight to surpass the yield stress, it will remain static in the fluid [3]. This is important because the
drilling fluid is correctly formulated it will retain a part of the cuttings, which otherwise would accumulate in the
bottom of the borehole and that could lead to stuck the pipe.

Some studies analyzed the settling phenomenon of one or two particles in thixotropic fluids [4, 5], using
Laponite and Xanthan gum solutions respectively. For the Laponite solution it was observed the longer the fluid
remained untouched, the lower the particle velocity, until a certain point where would be retained by the fluid.
Meanwhile for Xanthan gum experiment, a leading particle created a path of reduced viscosity, which made a
trailing particle have increased settling velocity.

To further understand the events that occur during the particle settling in a thixo-viscoplastic fluid, a direct
numerical simulation (DNS) based on the lattice Boltzmann method (LBM) will be used. The LBM is coupled
with the immersed boundary method (IBM) to model the particle motion. A detached boundary composed of
Lagrangian nodes applies a force in the fluid, modeling a wall in that location. Thixotropy may be modeled in
several ways [6]. One of them is the indirect microstructural model, which uses a scalar denominated structural
parameter to define the structuring level of the fluid. This allows the fluid properties, such as yield stress and plastic
viscosity, to be associated with the numerical value of the structural parameter. Being an intensive property, the
convection-diffusion transport equation in the mesoscopic scale is utilized to calculate its value in the flow. It will
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be analyzed the particle behavior, trajectory and velocity, as function of the yield number and model parameters as
well as the condition for the particle be retained by the fluid.

2 Numerical Method

The lattice Boltzmann method (LBM) is based on the discretization of the Boltzmann equation in the meso-
scopic scale. The method solves the behavior of a group of particles that travel in the discrete phase space. One of
the points in the discrete form of the Boltzmann equation is how to discretize the collision operator. An option is to
utilize the BGK collision operator proposed by Bhatnagar et al. [7]. This method utilizes a single relaxation time,
which for some cases exhibits numerical instabilities. Later developments improved the stability, one of them is
the method proposed by Latt and Chopard [8] which uses regularized pre-collision particle populations. By this
method the discrete Boltzmann equation is:

fi (x+ ci∆t, t+ ∆t) =

(
1− 1

τ

)
fregi (x, t) +

1

τ
feqi (x, t) +

(
1− 1

2τ

)
Fi (x, t) ∆t, (1)

where fi is the particle distribution function in a point x in the time t, Fi is the body force acting in that point, τ
is the relaxation time, feq is the particle equilibrium distribution function, which in the discrete form is [9]:

feqi = wiρ

[
1 +

ciαuα
c2s

+
uαuβ

(
ciαciβ − c2sδαβ

)
2c4s

]
, (2)

where ρ is the fluid density, wi is the velocity direction weight, uα is the fluid velocity in the α Cartesian coordinate
direction, cs is the speed of the sound, and ciα is the velocity vector which depends in the velocity set utilized. For
the D3Q7 and D3Q19 velocity sets, the values for ci and wi are, respectively:

ci =

{
(0, 0, 0), i = 0 wi = 1/4

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1, ..., 6 wi = 1/8
(3a)

ci =


(0, 0, 0), i = 0 wi = 1/3

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1, ..., 6 wi = 1/18

(±1,±1, 0), (±1, 0,±1), (0,±1,±1), i = 7, ..., 19 wi = 1/36

(3b)

The transformation of the body force term present in the eq. (1) from the Cartesian system to a velocity set is [10]:

Fi = wi

[
ciα
c2s

+

(
ciαciβ − c2sδαβ

)
uβ

c4s

]
Fα (4)

The current equations deal with the behavior of particle populations over time and space. For engineering problems
it is necessary to know the macroscopic properties of the flow. Density, velocity and the viscous stress tensor can
be computed as [11]:

ρ =
∑
i

fi +
∆t

2

∑
i

Fi (5)

ρuα =
∑
i

ficiα +
∆t

2

∑
i

Ficiα (6)

σαβ ≈ Πneq
αβ = −

(
1− ∆t

2τ

)∑
i

(fi − feqi ) ciαciβ −
∆t

2

(
1− ∆t

2τ

)
(Fαuβ + uαFβ) (7)

To return the momentum balance equations it is necessary a relation of the properties and momentum balance of
generalized Newtonian fluids between the mesoscopic and macroscopic scales. This is accomplished by correlation
of the apparent viscosity and the relaxation time, which originates from the Chapman–Enskog expansion [12]:
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τ =
η

ρc2s
+

∆t

2
. (8)

As effect, changing the relaxation time locally the fluid viscosity will also change. The thixotropic model utilized
in this work is a reduced model adapted from the indirect microstructural model proposed by Houska [13]:

σ = η(γ̇, λ)γ̇, (9a)

η(γ̇, λ) =

 ∞ , |σ|≤ τy
ηp + τy/|γ̇| , |σ|> τy

(9b)

τy = λτSy + (1− λ) τDy (9c)
∂λ

∂t
+ ui

∂λ

∂xi
=

1

teq
[−k1λγ̇ + k2(1− λ)] , (9d)

where λ is the structural parameter responsible for the thixotropy, τSy is the static yield stress, τDy is the dynamic
yield stress, ηp is the plastic viscosity, γ̇ is the shear rate, teq is the equilibrium time, k1 and k2 are the breakdown
and build-up parameters respectively. To transport the structural parameter over the flow, the convection-diffusion
equation in the mesoscopic scale is utilized [14]:

gi (x+ ci∆t, t+ ∆t) =

(
1− 1

τg

)
gi (x, t) +

1

τg
geqi (x, t) +

(
1− 1

2τg

)
wiq (x, t) , (10)
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(11)
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2
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λ =
∑
i

gi +

(
1− 1

2τg

)
wi∆t

2
q (13)

where gi is the particle distribution function associated with the structural parameter λ, τg is the relaxation time
associated with diffusion factor of the structural parameter D (necessary to be close to 0.5 to avoid numeric
diffusion), and q is the source term responsible for the breakdown and build-up of the fluid-structure and it is equal
to the right hand side of the eq. (9d). This second population group (gi) will utilize the velocity set D3Q7 [15]
while the population responsible for the fluid flow (fi) utilizes the D3Q19.

To model a particle settling in the thixotropic fluid the immersed boundary method (IBM)[16][17] is utilized.
This method consists in a second mesh composed of Lagrangian nodes that apply a body force in the fluid dis-
cretized by the Eulerian lattices. Because the nodes do not necessarily coincide with lattices, the force exerted by
the node is distributed over a region by a discrete Dirac’s delta[16], in this work is determined by the kernel φ4.
The no-slip condition is then satisfied when the velocity of the IBM nodes is equal to the interpolation of the fluid
velocity from the LBM:

uL =
∑
E

uE,noF δ (x−X)h3 +
∑
E

[∑
L

∆t

2ρ
FLδ (x−X) ∆S

]
δ (x−X)h3 (14)

where uL is the velocity of the IBM node, and uE,noF is the fluid velocity without the effect of the IBM force, δ
is the discrete Dirac’s delta, x −X is the distance between the Lagrangian node and an Eulerian lattice, h is the
lattice length, FL is the force exerted by the IBM nodes, and ∆S is the surface area of the IBM node. To solve
this linear equation system where FL is the unknown variable in each time step, the explicit method by by Dash
et al. [18] will be used.

The sum of all node forces is equal to the total force that the particle applies in the fluid, and vice-versa
by Newton’s third law of motion. Because IBM does not eliminate the fluid inside the boundary formed by
the Lagrangian nodes, the correction proposed by Feng and Michaelides [19] is implemented. Gravitational and
buoyancy forces are the two remaining forces acting in the particle. Finally, the discrete velocity update equation
is
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U t+1
p =

(
1 +

ρf
ρp

)
U t
p −

ρf
ρp
U t−1
p +

1

mp

−∑
Lp

FLh∆S + (mp −mf ) g

∆t, (15)

where Up is the velocity of the center of mass of the particle, ρf/ρp is the density ratio between the fluid and
particle, mp is the particle mass, mf is the fluid mass inside the particle, and g is the gravitational acceleration.

3 Validation

Since the chosen thixotropic model permits the existence of yielded and unyielded zones coexisting in the
fluid, it is important to assess its capability to solve the yield surface and the viscous drag. The simplest model
where this behavior exists would be in a non-thixotropic Bingham fluid. Because of that, the Stokes’ drag coef-
ficient, Cs = F/3πηpV D, around a fixed sphere immersed in a Bingham fluid, where F is the force, is solved
numerically to validate the numerical model. A sphere of diameter D is positioned inside a rectangular domain
with dimensions 10D× 10D× 10D. The kinetic parameters, k1 and k2, are equal to 0 and the initial value for the
structural parameter is 1. This makes the thixotropic fluid behave like a Bingham fluid. A uniform inlet velocity
V is applied[20], resulting in a Reynolds number ReD = DV/ηp = 1. Meanwhile, the lateral boundaries of the
domain have a free-slip condition[21]. The yield stress is modified to allow a range of Bingham numbers Bi = 2,
5, 10, 20, 40. The ratio of the distance between Lagrangian nodes and the Eulerian lattice size is approximately
1. The numerical results are compared with the correlation proposed by Blackery and Mitsoulis [22] using their
numerical results and represented in Table 1.

Table 1. Sphere Stokes’ drag coefficient in a Bingham fluid.

Bi 2 5 10 20 40

Present 6.41 11.9 20.2 35.9 65.7

Blackery and Mitsoulis [22] 5.55 10.9 18.9 33.8 61.1

| (θ − θref ) /θref 15.7% 9.68% 6.92% 6.33% 7.54%

The errors are in acceptable limit considering that sphere diameter was equivalent to 20 lattices. The numer-
ical accuracy can be further improved by increasing the sphere diameter, which for this work was limited by the
amount available memory in the GPU utilized. The yielded and unyielded regions around the sphere are shown in
the Fig. 1.

Bi = 2 Bi = 40

Figure 1. Velocity vectors (red) and unyielded (black) / yielded (gray) regions for flow around a fixed sphere with
Reynolds number equal to 1.

The yield surface was delimited by τ = 104 to reduce the numerical noise, it acquired the truncated toroid
form expected in this flow[23]. The fluid displacement in the fore section of the sphere creates a circulation pattern
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that causes the formation of an unyielded region inside the yielded fluid [24]. The indentation in the fore and
aft sections of the yield surface, due to the reduced stress, are also present. These results demonstrate that the
numerical model is capable to account for a correct representation of the Bingham fluid flow.

4 Results

To understand the events which will occur during the particle settling in a thixotropic fluid the following
simulation parameters are utilized. A particle with diameterD is positioned 25.2D from the bottom of a rectangular
domain with dimensions 6.7D × 6.7D × 26.7D which contain an initially unstructured thixo-viscoplastic fluid.
This fluid has a dynamic yield stress equal to zero, τDy = 0, while its static yield stress is modified to change the
yield number YG = 3τSy /gD (ρp − ρf ). The plastic viscosity is kept constant at ηp/

√
gD3 = 6.7 × 10−3. The

breakdown parameter is k1/
√
D/g = 6.65× 10−3 and the build-up parameter is k2 = 1× 10−4. In this study

two equilibrium time values teq/
√
D/g = 1.6× 10−6 and 4.8× 10−6, with τg = 0.5001, are evaluated. The

rectangular domain is discretized with 150× 150× 600 lattices, while the spherical particle is composed of 1158
Lagrangian nodes, with a density ratio of ρp/ρf = 1.16. The modified yield number was varied from 0 to 0.156
and the results for trajectory and velocity are presented in Fig. 2.
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Figure 2. Trajectory and velocity of a spherical particle with different YG settling in a thixo-viscoplastic fluid with
teq/

√
D/g = 1.6× 10−6 and 4.8× 10−6. Red: Particle stopped / Blue: finite terminal velocity.

Analyzing the results for the highest equilibrium time, the particle reaches a terminal velocity when YG ≤
0.128 while for YG ≥ 0.137 it does not have enough weight to break the fluid and it is consequently retained. This
indicates that the critical yield number is between 0.137 and 0.143 for this equilibrium time. If the equilibrium time
decreases, the thixotropic fluid takes a shorter time to reach equilibrium, and this causes the particle to maintain the
high initial velocity for a reduced period Fig. 2.b. Reducing the equilibrium time also decreases the maximum and
terminal velocities achieved, as a consequence of higher average yield stress in the flow. It was observed a 12%
drop in the terminal velocity when YG = 0.046, the velocity drop kept increasing exponentially with YG until the
particle is completely still. As consequence, the critical yield numbed move to be between 0.137 and 0.143, which
are close of the result of 0.143 obtained by Beris et al. [23] and 0.145 by Tabuteau et al. [3] in a Bingham fluid.
Essentially, the Bingham model could be modeled as thixo-viscoplastic fluid with instantaneous build-up rate, in
other words with, a equilibrium time equal to zero.

Another important aspect is to understand the evolution of the yield surface and the structural parameter field
over time, which for the values of YG = 0.148 and 0.137 are represented in Fig. 3. At very short times there is
no apparent difference in the fluid structure, when the structuring level of the undisturbed fluid λ∞ = 0.64. The
yielded surface is similar to the one formed when settling a Bingham fluid, with a sightly asymmetry between the
fore and aft sections. This changes when the fluid reaches the maximum structuring level, λ∞ = 1. On this point,
as expected the structural parameter decreases near the particle wall and in the frontier between the yielded and
unyielded regions, which leaves a trail of reduced yield stress in the path that the particle traveled. But the opposite
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also happens, the unyielded regions inside the yielded do not totally breakdown, which causes the appearance of
a connection with the outside unyielded fluid when YG = 0.143. When YG = 0.137 this will simply increase
the size of the unyielded region, but not create the connection. A new unyielded region will appear in the aft
section, this is associated with the stagnation point which occurs behind a sphere. As the time progresses further,
for YG = 0.143 the particle is now is still with the fluid totally yielded but with some regions where λ < 1 which
are still recovering from the shear caused by the particle. Meanwhile for YG = 0.137 the particle continues to
settle in a steady-state.

σ λ σ λ

YG = 0.143 YG = 0.137

t√
D/g

= 30

t√
D/g

= 300

t√
D/g

= 400

λ

Figure 3. Time evolution for the yield surface and structural parameter when YG = 0.143 and 0.137, with
teq/

√
D/g = 1.6× 10−6 and τg = 0.5001.

5 Conclusions

In this study, it was investigated the settling phenomenon of a spherical particle in a thixo-viscoplastic fluid.
The results were obtained through the use of the lattice Boltzmann method coupled with the immersed boundary
method. Thixotropy was modeled using a modified micro-structural indirect model. A selection of parameters
allowed the reduction to a Bingham model, which was used to validate the numerical method. At initial times, the
particle accelerates similar to a Newtonian fluid, due to the reduced value of the yield stress. As the fluid builds-up
to a structured state the particle velocity reduces, until it reaches a steady-state. The steady-state can be divided
into two states: finite terminal velocity or stopped. The separation of these states is characterized by the critical
yield number. It was noted that yield number value changes depending on time-dependent parameters of the model,
where a longer equilibrium time reduced the yield stress necessary to stop the particle. When the fluid is totally
structured, the strain caused by the settling particle causes a reduced breakdown rate, which consequently leads
to higher yield stress near the particle. This effect also increases the size of unyielded regions near the particle,
to the point where it will connect with the outside unyielded regions. Overall the method was capable to model
the thixo-viscoplastic behavior, as well as reduce the particle velocity until stop. Furthermore, the method can be
expanded to accommodate different thixo-viscoplastic models, and model higher numbers of particles along with
different shapes.
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