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Abstract. We present a stabilized hybrid finite element formulation for the elastic wave equation in two space
dimensions. The proposed hybrid formulation is characterized by the introduction of auxiliary variables on the
edges of the elements, which are identified as Lagrange multipliers associated with the trace of displacement field.
A second order explicit finite difference method is adopted in the time domain. It is well known that when this
second order ”explicit” finite difference approximation in time is combined with classical Continuous Galerkin
finite element approximations in space it does not lead to a really explicit method, given that the consistent mass
matrix in this case is non diagonal. With the proposed formulation it is possible to obtain really explicit methods
with block-diagonal mass matrices. Even diagonal mass matrices can also be obtained, as long as the Lagrangian
interpolation functions are centered in the Gauss integration points. Convergence studies are conducted on uni-
form and on randomly generated non-uniform quadrilateral meshes. Meshes with straight or curved quadrilateral
elements are considered, associated with Lagrangian bases and with Qk and Pk monomial bases.
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1 Introduction

This work is dedicated to the proposal of a symmetrical and stabilized primal hybrid formulation for the
time elastic wave equation. Mixed finite element hybrid methods have been proposed for solving many important
problem in Computational Mechanics and Engineering. In particular, for problems governed by the acoustic and
elastic wave equations we refer to the works [1],[2],[3]. One of the advantages of mixed-hibridized methods for
elasticity problems is the gain of accuracy in the approximation of stress fields. However, the introduction of
additional unknowns, proper of these methods, increases the computational cost for solving the local problems. In
[4] is proposed and analyzed a stabilized primal hybrid formulation for the elasticity problem. Later on, hybrid
finite element methods are proposed in [5] for the elastic wave equation in the frequency domain in which the
multiplier is identified as the trace of the primal variable on the edges of the elements. These last two references
are fundamental for the preset work, whose objective is to develop a stabilized primal hybrid formulation for elastic
waves in the time domain, with the use of discontinuous function spaces to approximate the multiplier.

2 Notations and definitions

In this section we extend to the primal hybrid formulation proposed and analyzed in [4] for stationary elastic-
ity to the time dependent elasticity problem. Before the introduction of the primal hybrid formulation we present
some useful definitions and notations. Let Rd, d ≥ 1, denote a bounded domain with smooth contour ∂Ω. Given
a scalar function space V (Ω), we introduce the spaces V (Ω) = [V (Ω)]d and V(Ω) = [V (Ω)]d×d of vector and
tensor fields whose components belong to V (Ω). These spaces are provided with norms, defined in a similar way
to the norm of the V (Ω) space. We defined Th = {K} the union of all elements K as a regular finite element
partition of Ω and denote the set of all edges of the elements by Eh = {e : e is an edge of K for all K ∈ Th}. The
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set of all inner edges, in turn, is denoted by E0h = {e ∈ Eh : e is an internal edge} and the set of edges located in
the contour of Ω is denoted by E∂h = Eh ∩ Γ. To each edge e we associate a normal vector ne.

In the Th partition let K+ and K− be two any elements containing the same edge e , as illustrated by the
Figure (1). On the set of adjacent edges e = ∂K+ ∩ ∂K−, we take an arbitrary point x ∈ e and exterior unitary
normal n+ and n−, respectively, departing from this point. We also need to define jump and average operators
for vector v and tensor τ functions, respectively. functions these smooth inside each element K±. Averages in
x ∈ e are defined as {{v}} = 1

2 (v+ + v−), {{τ}} = 1
2 (τ+ + τ−), in e ∈ E0h, and scalar and vector jumps

are denoted in each case by JvK = v+ · n+ + v− · n−, Jτ K = τ+n+ + τ−n−. When x belongs to an edge
e ∈ E∂h , the averages and jumps operators are defined as {{v}} = v, {{τ}} = τ , and JvK = vn, Jτ K = τn,
with n being the normal unit outside the contour Γ. The jump of a vector to matrix values JJ·KK is defined as
JJvKK = v+ ⊗ n+ + v− ⊗ n−, when x ∈ E0h, and JJvKK = v ⊗ n, if x ∈ E∂h .

K+ K−

n+n−

e

Figure 1. Example of elements with a interface e = ∂K+ ∩ ∂K−.

2.1 Model problem

Let Ω be an open and bounded domain in R2 with boundary ∂Ω = Γ smooth by parts. We postulate Ω as
the domain of an elastic, homogeneous and isotropic body, submitted to an external force f . The mathematical
model describing elastic wave propagation problem consists in finding the vector field u(x1, x2) which satisfies
the partial differential equation

ρ
∂2u

∂t2
−divσ(u) = f , in Ω,

σ(u) = Dε(u), in Ω,
(1)

subject to boundary condition u = g in Γ and initial conditions u(x,0) = u0(x),
∂u(x,0)

∂t
= v0(x). Where ρ

is the density of the medium, which we will considered here as constant, σ is the symmetric Cauchy stress tensor,
ε(u) = 1

2 (∇u+∇uT ) is the linear strain tensor, D = 2µI + λI ⊗ I is the isotropic elasticity tensor, where I is
the second-order identity tensor and I is the fourth-order identity tensor on symmetric second-order tensors. For
plane strain problems the Lamé coefficients are given by the relations

λ =
Eυ

(1 + υ)(1− 2υ)
, µ =

E

2(1 + υ)
,

with E and υ being the modules of elasticity and Poisson coefficient, respectively.
Model(1) is capable of describing pressure and shear wave propagations [6],[7],[8]. Considering a harmonic

behavior in time for the displacement field u both a pressure wave up and shear waves us are solutions to the
model problem, separately or combined. One solution, which will be used here in numerical experiments in the
following sections, is associated with pressure wave u = eiωtup where

up = αp

cos θ

sin θ

 eikp(x1 cos θ+x2 sin θ), kp =

√
λ+ 2µ

ρ
,

with αp being the amplitude and kp the pressure wave number.

2.2 Stabilized primal hybrid method (SPHM)

Initially we introduced the approximation spaces for the displacement field u and for the Lagrange multiplier
λ = u|e, which is an auxiliary variable defined on each edge e ∈ Eh associate with the trace of the displacement
field on each edge e E0h. We define the following spaces for the displacement field and the multiplier in this order

V k
h = {vh ∈ L2(Ω) : vh|K ∈ [Sk(K)]2 ∀K ∈ Th} and M l

h = {λ ∈ L2(Eh) : λ|e = [pl(e)]
2,∀e ∈ E0h}.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 16-19, 2020



J.D.B. Santos, A.F.D. Loula.

For the displacement approximation we adopt Sk(K) ∈ {Qk(K),Pk(K)} and for the multiplier we consider
pl(e), space of discontinuous polynomials of degree ≤ l in each edge e. By construction, functions vh belonging
to broken function space V k

h are defined, independently, in each element K belonging to the partition. Our primal
hybrid formulation will be applied to meshes of quadrilateral elements, without loss of generality. In fact, the
hybrid method can be performed on generic polygonal partitions. Restricted to an element K the model problem
(1) can be rewritten as:

Finding a displacement field u satisfying the equation

ρ
∂2u

∂t2
− div (JJDε(u)KK) = f , in K, (2)

and the interface conditions
JJDε(u)KKe = 0, JuKe = 0, (3)

on each edge e ∈ E0h. The semi-discreet stabilized primal hybrid formulation on each element K, for the problem
(2) consists, for ρ = 1, in :

Finding the pair [uh,λh] ∈ V k
h ×M l

h such that, for all [vh,µh] ∈ V k
h ×M l

h

∑
K∈Th

∫
K

∂2uh
∂t2

· vhdx +
∑
K∈Th

∫
K

Dε(uh) : ε(vh)dx−
∑
K∈Th

∫
∂K

Dε(uh)nk · (vh − µh)ds

−
∑
K∈Th

∫
∂K

Dε(vh)nk · (uh − λh)ds+ 2µ
∑
K∈Th

β1

∫
∂K

(uh − λh) · (vh − µh)ds =
∑
K∈Th

∫
K

f · vhdx, (4)

where β1 = β0

h , β0 ≥ 0. Applying some identities given in [4] the integral equation (4), for λh and µh only
determined, can be rewritten as:

Find the pair [uh,λh] ∈ V k
h ×M l

h such that

A([uh,λh], [vh,µh]) = F ([vh,µh]), ∀[vh,mh] ∈ V k
h ×M l

h,

with

A([uh,λh], [vh,µh]) = aDG(uh,vh)−
∑
e∈E0h

∫
e

JDε(vh)K · ({{uh}} − λh)ds

∑
e∈E0h

∫
e

−JDε(uh)K · ({{vh}} − µh)ds+ 2µ
∑
K∈Th

β0
2h

∫
∂K

(uh − λh) · (vh − µh)ds,

F ([vh,µh]) =
∑
K∈Th

∫
K

f · vhdx, (5)

in which

aDG(uh,vh) =
∑
K∈Th

∫
K

∂2uh
∂t2

· vhdx +
∑
K∈Th

∫
∂K

Dε(uh) : ε(vh)dx−
∑
e∈Eh

∫
e

{{Dε(uh)}} : JJvhKKds (6)

−
∑
e∈Eh

∫
e

{{Dε(vh)}} : JJuhKKds+ 2µ
∑
e∈Eh

β0
2h

∫
e

JJuhKK : JJvhKKds.

As observed in [4], by solving exactly the multiplier equation we have

λh = {uh} −
1

2β02µ
JDε(uh)K, (7)

and replacing (7) in the hybrid formulation (5), we obtained the following modified Discontinuous Galerkin method

A([uh,λh], [vh,µh]) = aDG(uh,vh)− 1

2µ

∑
e∈Eh

∫
e

1

2β0
JDε(uh)K · JDε(vh)Kds, (8)

where the latter term is the only difference of this modified method to the classic Symmetric Interior Penalty
Discontinuous Galerkin formulation.
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3 Time integration algorithm

For a totally discrete version of the equation(4), the mid-point rule will be applied in the approximation of the
temporal derivative. This way an explicit method will be obtained, having as initial conditions the displacement
fields in t = 0 and t = ∆t. Being ∆t the integration step in time and h the mesh refinement parameter, we
formulate the following explicit algorithm:

Given u0
h = uh(x1, x2, 0), u1

h = uh(x1, x2,∆t) find [un+1
h ,λnh] ∈ V k

h ×M l
h such that

λnh = {unh} −
1

2β02µ
JDε(un

h)K, for every edge e ∈ ε0h (9)

∫
K

un+1
h − 2unh + un−1h

∆t2
· vhdx +

∫
K

Dε(un
h) : ε(vh)dx−

∫
∂K

Dε(un
h)nk · vhds

−
∫
∂K

Dε(vh)nk · (unh − λnh)ds+ 2µβ0

∫
∂K

(unh − λnh) · vhds =

∫
K

f · vhdx, ∀vh ∈ V k
h , (10)

for each element K ∈ Th. In matrix form, the equation (10) is presented in each element as

M(Un+1 − 2Un +Un−1) +KUn = F n

(11)

⇒ Un+1 = 2Un −Un−1 +M−1(F n −KUn), (12)

where M is the mass matrix, K is the stiffness matrix that incides on volume integrals and edge integrals on unh
and F n is the vector that incides on edge integrals on λnh and source term. When adopting Lagrangian polynomials
as basis functions for V k

h we consider two situations: (1) Lagrange polynomials centered in the nodal points and
(2) Lagrange polynomials centered in the Gauss integration points. In the first case, the mass matrix will be block-
diagonal. In the second case, the mass matrix will be diagonal. When monomial in P2 or Q2 are adopted as basis
functions, the associated mass matrices will always be block-diagonal.

4 Convergence studies

Numerical experiments will be carried out on meshes of uniform and randomly deformed quadrilateral ele-
ments to test the convergence rates of the proposed stabilized hybrid method when adopting Q2 Lagrangian bases
and Q2 and P2 monomial bases in the physical variables x and y [9], with no mapping. The L2-projections of
initial conditions and the exact solution are calculated to be compared with the approximations provided by the
proposed hybrid method. This projection, denoted by ũh, is given by

(ũh, vh)K = (u, vh)K , ∀vh ∈ Vh,

in each element K ∈ Th. Approximations will be made on meshes of 2i+1 × 2i+1 elements and respective
nstp = 80 × 2i+1 time steps , with i = 0, 1, 2, 3, 4, using polynomials Q2 and P2. The non-uniform meshes will
be generated by random perturbations in the (xj , yj) coordinates of the nodes inside the domain. This is done
by redefining coordinates x∗j := xj + δ · rand · h, y∗j := yj + δ · rand · h being δ := 0, 14 the perturbation
percentage, rand a pseudo random number in the range [−1, 1] and h the original length on the side of the element
in the uniform mesh. As a exact solution the real part of the field will be adopted u = eiωtup where up =

αp (cos θ sin θ)
T
eikp(x cos θ+y sin θ), with amplitude αp = 1. The problem parameters (1) will be constants with

values ω = 4, ρ = 1, θ = π/4 and Lamé parameters fixed at E = 1 and υ = 0, 3. The approximate solutions were
obtained using quadrilateral elements Pk − pk and Qk − pk, where k denotes the degree of polynomial space for
the displacement field and the Lagrange multiplier. All results of the convergence studies correspond to the final
instant t = Tf = 1(s).

In Figure 2 are presented the graphs that confront the approximations via DG and SPHM in sequences of
uniform and deformed meshes of Q2 elements and Lagrangian function spaces. The expected rates are observed
on uniform meshes for the approximations of the displacements in the L2-norm for both methodologies in the first
three meshes. The SPHM approximations are more accurate. With h refiniement, it is observed that the error of
second order temporal discretization begins to predominate in the last meshes of the sequence (Figure 2(a)). The
gradient approximations in both methods present optimal rates in the whole sequence of uniform meshes (Figure
2(b)), for being second order in bothe space and time approximations. The Figures 2(c) e 2(d) present the results
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associated with the approximations of the displacements and their gradients over sequences of deformed meshes.
In this case, the elements will not have straight sides and a geometric transformation is necessary to define elements
with curved sides [10], causing sub-optimal rates of convergence for the displacements and their gradients. In this
scenario the SPHM method presents a gain of accuracy in the whole sequence of meshes for the displacement and
also for the stress.

Experiments with monomial function spaces Q2 − p2 with both methods can be seen in Figures 3. For
uniform meshes a behavior analogous to that of SPHM with Lagrangian basis functions is observed. For non-
uniform meshes, the rates of convergence of the approximations obtained by both methods deteriorate. This is due
to the fact that the traces of the monomials belonging to Q2 do not always belong to p2(e), when the edge e is not
aligned with the x or y coordinated axis.

Other h-convergence study is presented in Figure 4 with approximations via DG and SPHM in sequences of
uniform and deformed meshes and P2 − p2 monomial function spaces. In this case, we can clearly observe that
the convergence behavior of both DG and SPHM is not affected by the mesh distortion. The expected rates of
convergence are observed for the displacements (Figures 4(a) and 4(c) ), gradient of displacement(Figures 4(b)
and 4(d).
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Figure 2. Convergence study in the L2-norm and H1 semi-norm of the approximations uh obtained with the
DG and SPHM methods, compared with the projection ũh, for Lagrangian function spaces Q2 with nine node
elements, considering uniform meshes (Figures (a) and (b)) and randomly distorted meshes (Figures (c) and (d)).
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Figure 3. Convergence study in the L2-norm and H1 semi-norm of the approximations uh obtained with DG
and SPHM, compared with the projection ũh, for spaces of monomial Q2 with nine node elements, considering
uniform meshes (Figures (a) and (b)) and randomly distorted meshes (Figures (c) and (d)).
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Figure 4. Convergence study in the L2-norm and H1 semi-norm of the approximations uh obtained with DG and
SPHM, compared with the projection ũh, for spaces of monomials P2 on nine node elements, considering uniform
meshes (Figures (a) and (b)) and randomly distorted meshes (Figures (c) and (d)).
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Figure 5. Convergence study in the L2-norm for the λh SPHM approximations with β0 = 24 considering different
function spaces with quadrilateral elements of 9 nodes Q2 in randomly distorted meshes.
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Figure 6. SPHM L2-norm convergence for displacement, gradient of gradient and multiplier, with Lagrangian
function spaces Q2 − p2 centered in Gauss points considering uniform and randomly deformed meshes.

In [11] a special situation is presented for a formulation of Discontinuous Galerkin in which the obtaining
of diagonal mass matrices associated with the temporal discretization of the acoustic wave equation is feasible
by using the Lagrangian polynomial base centered on Gauss points. We also adopt Lagrangian bases centered on
Gauss integration points in the SPHM formulation for the elastic wave. The corresponding results of convergence
studies are presented in Figure 6. For uniform meshes it is possible to observe optimal rates for the L2-projections
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of displacements and their gradients. The influence of the temporal discretization error can also be observed
in more refined meshes of the sequence, either in the approximation of the displacement (Figure 6(a)) or the
multiplier (Figure 6(c)). Still in uniform meshes, optimal rates are obtained for the approximation of the gradient
∇uh. Concerning distorted mesh, suboptimal rates of convergence are observed, as expected in the context of
Lagrangian approximations functions, as a consequence of the need for the aforementioned mapping.

5 Conclusions

A hybrid stabilized formulation denoted by SPHM is proposed and applied to the elastic wave equation with
Dirichlet boundary conditions. The Lagrange multiplier, identified as the trace of the solution in the structure of
the mesh composed by the edges of the elements, is calculated from the initial conditions of the problem. As
the continuity of the DG and SPHM methods is imposed by the variational, the use of discontinuous monomial
function spaces is possible. The Pk spaces is proved to be more robust on distorted quadrilateral meshes than the
Qk spaces whose convergence rates are severely affected by mesh distortion.
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[11] Grote, M. J., Schneebeli, A., & Schötzau, D., 2006. Discontinuous galerkin finite element method for the
wave equation. SIAM Journal on Numerical Analysis, vol. 44, n. 6, pp. 2408–2431.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 16-19, 2020


	Introduction
	Notations and definitions
	Model problem
	Stabilized primal hybrid method (SPHM)

	Time integration algorithm
	Convergence studies
	Conclusions

