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Abstract. The acoustic waves propagation is a subject of great application in several areas of engineering, for 

example in marine seismic for the detection of underwater objects, in hydrography and navigation for the detection 

of the seabed, among others. In this work, a nonlinear model for the propagation of P-waves in a stratified 

environment is developed. Starting from the nonlinear equations that governs the fluid motion of a compressible 

fluid with mass source we obtain the nonlinear equations for the acoustic P-wave propagation. The set of equations 

in the conservative form are solved numerically using the finite difference method applying the explicit strong 

stability-preserving (SSP) multistep method. In order to achieve higher order accuracy in time, the fourth-order 

SSP Runge–Kutta time discretization was implemented and the Courant-Friedrichs-Levy (CFL) criterion must be 

satisfied for an adaptative time step along the simulation. The second order spatial derivatives are solved using the 

minmod based MUSCL spatial discretization. A numerical code is written in Fortran language and simulations 

with a Ricker-type pressure source were performed. Numerical results are in good agreement with those reported 

in the literature. 
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1  Introduction 

The numerical study of the propagation of acoustic waves is a subject of great interest in the area of 

geophysics. The applications of these waves in heterogeneous media cause discontinuities in physical properties, 

in which the numerical methods are an excellent tool for studying the propagation of acoustic waves in large 

dimensions and with satisfactory results for understanding the acoustic behavior in water and in substrates 

(Antunes [1]). 

Research on seismic waves and propagation is a first step in understanding the material characteristics (e.g. 

sedimentary pattern, type of sediment, presence of oil, salt domes, among others) and the exploration by the oil 

and gas industry. A typical understanding of the seismic waves, consists of the generation of an acoustic wave that 

propagates in different sedimentary layers. Generally, this acoustic wave or seismic wave propagates from the 

source on the water surface to the different sedimentary layers. Propagating in different layers the acoustic wave 

may be refracted, diffracted and / or reflected. These effects can be recorded by geophones, which record the time 

series of the reflect waves that are called seismic traces or seismogram. Thus, the numerical modeling of the 

acoustic wave is a valuable tool for the interpretation, evaluation and design of seismic equipment (Abdelkhalek 

[2]). 

Much of the research on acoustic or seismic waves modeling assume that the Pressure field is expressed by 

the scalar wave equation, where it is represented by the second derivative operator in the time of the pressure and 

by the Laplacian operator of the pressure in space (e.g. Santos [3]; Fernandes [4]; Wang [5]; Xu [6]). Generally, 

the finite difference method is used to solve the spatial derivatives of the Laplacian operator (Xu [6]). 

In this paper a nonlinear numerical model for the propagation of the seismic waves was developed. The 

numerical theory was based following the work of Shi [7] and Liu [8], in which was developed an algorithm using 

a hybrid TVD finite-difference and finite-volume method for the set of nonlinear equations. This technique 

provides fast and accurate simulation and was applied in several case studies with wave-speed domains stratified. 
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2  Nonlinear Seismic Wave Equations 

The nonlinear acoustic wave model was developed from the Mass and Momentum Conservation Laws for a 

compressible fluid. We applied the concept of dimensional analysis to the Momentum equation and combine the 

elasticity-modulus equation with the mass conservation to obtain a closed set of equations for the pressure (𝑃) e 

velocity (�⃗� ). The resulting nonlinear equations are written in a conservative form to facilitate the numerical 

implementation of the methodology used in this paper. For simplicity, the acoustic wave equations are written in 

the dimensionless variables 𝑃′ = 𝑃/𝐸, considering 𝐸 ≠ 𝐸(𝑡) and 𝐸 = 𝐸(𝑥, 𝑦), where 𝐸 = 𝜌(𝐷𝑃/𝐷𝑡)/(𝐷𝜌/𝐷𝑡) 

is the modulus of elasticity of the medium. The resulting set of equation to simulate the P-waves propagation as a 

function of time (𝑡) are given by 

𝜕𝑃′

𝜕𝑡
+ ∇. [1 + 𝑃′)�⃗� ] = �̇�𝑓(𝑡) + 𝑃′(𝛻. �⃗� − �⃗� .

𝛻𝐸

𝐸
) (1) 

𝜕�⃗� 

𝜕𝑡
+ 𝛻. (�⃗� �⃗� ) + ∇(𝑐2𝑃′) = �⃗� (𝛻. �⃗� ) + 2𝑃′𝑐𝛻𝑐 −

𝑐2𝑃′

𝐸
∇𝐸 (2) 

where 𝛻 is the differential nabla operator (𝜕 𝜕⁄ 𝑥, 𝜕 𝜕⁄ 𝑦) in the horizontal coordinates (𝑥) and vertical coordinates 

(𝑦), �⃗�  is the velocity vector (𝑢, 𝑣) and 𝑐 is the wave speed (celerity) in the medium. The relation of modulus of 

elasticity with the celerity is 𝐸 =  𝜌𝑐2, where 𝜌 is the density of medium. �̇�𝑓(𝑡) is the pressure source term 

determined by the first derivative of a Gaussian function (Ricker-type pressure source by Moreira [9]) given by 

�̇�𝑓(𝑡) = 𝑡0 exp(−0.25𝜋𝑓𝑐
2𝑡0

2) (3) 

in which 𝑓𝑐 = 3√𝑓 is the central frequency of the source and 𝑓 is the cutoff frequency. 𝑡0 = t − 2√𝜋/𝑓 is the time 

required to guarantee �̇�𝑓(𝑡) = 0 for 𝑡 < 0. 

3  Numerical Scheme 

The generalized and compact form of eq. (1) and eq. (2) can be defined as 

𝜕𝝍/𝜕𝑡 + 𝛻.𝝓(𝝍) = 𝑺  where, 𝝍 = (
𝑃′

𝑢
𝑣

) and 𝝓 = (

(1 + 𝑃′)(𝑢𝒊 + 𝑣𝒋)

(𝑢𝑢 + 𝑐2𝑃′)𝒊 + (𝑢𝑣)𝒋

(𝑣𝑢)𝒊 + (𝑣𝑣 + 𝑐2𝑃′)𝒋

) (4) 

𝑺 = (

�̇�𝑓(𝑡) + 𝑃′(𝜕𝑢/𝜕𝑥 + 𝜕𝑣/𝜕𝑦 − 𝑢𝐸−1𝜕𝐸/𝜕𝑥 − 𝑣𝐸−1𝜕𝐸/𝜕𝑦)

𝑢(𝜕𝑢/𝜕𝑥 + 𝜕𝑣/𝜕𝑦) + 𝑐𝑃′(2𝜕𝑐/𝜕𝑥 − 𝑐𝐸−1𝜕𝐸/𝜕𝑥)

𝑣(𝜕𝑢/𝜕𝑥 + 𝜕𝑣/𝜕𝑦) + 𝑐𝑃′(2𝜕𝑐/𝜕𝑦 − 𝑐𝐸−1𝜕𝐸/𝜕𝑦)

) (5) 

Thus, the dimensional pressure value can be obtained by 𝑃 = 𝑃′𝐸. 

The numerical scheme developed consists of a combined finite-volumes/finite-differences method, as 

presented in Shi [7] for gravity waves. This method has two main steps to solve the numerical fluxes 𝛻.𝝓(𝝍) of 

the acoustic wave equation: the first step is to use the reconstruction technique to calculate the values at the 

numerical grid cell interface; The second step uses the local Riemann solver to predict the fluxes at the grid cell 

interfaces. The acoustic wave equation dispersive terms 𝑺 are solved by a 4th order finite difference method with 

5 grid points. 

The high-order MUSCL-TVD (Monotonic Upstream-centered Scheme for Conservation Laws - Total 

Variation Diminishing) was used to solve the flux terms and first order derivative terms. This technique is able to 

substantially reduce the numerical diffusion without causing non-physical oscillations (numerical noises), by 

linearly reconstructing the values of the flux variables within or at the cell interfaces (Hou [10]). 

As in Liu [8], the modified MUSCL-TVD fourth-order scheme with the van-Leer Limiter (Erduran [11]) is 

used to obtain the values of conservative variables at the cell interfaces, following an HLL (Harten-Lax-Leer) 

approximation  for the Riemann solver to obtain the fluxes (Harten [12]). 

The combined form of the cell interface construction in the 𝑥 direction can be written as 
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] (6) 

𝜙
𝑖−

1

2

𝑅 = 𝜙𝑖 −
1

4
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𝑟
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where 𝜙𝑖+1/2
𝐿  is the value constructed on the left side of the 𝑖 + 1/2 interface and 𝜙𝑖−1/2

𝑅  is the value constructed 

on the right side of the 𝑖 − 1/2 interface. The values of ∆∗𝜙 are as follows 
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1

2
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(8) 

In eq. (8), minmod represents the MinMod Limiter, which selects the lowest value in modulus if its 

arguments have the same sign, and zero if its arguments have different sign. This function ensures that in regions 

of maximum and minimum the local diffusive flux will be null, making the numerical flow of the first order, 

preventing spurious oscillations in the solution. Thus, the MinMod Limiter for variables (a, b, c), for example, is 

given by 

minmod(𝑎, b, c) = sign(𝑎) max{0,min[|𝑎| , 2sign(𝑎)𝑏, 2sign(𝑎)𝑐]} (9) 

𝜅1 in eq. (6) and eq. (7), and 𝜅2 in eq. (8) are control parameters for orders of the scheme in the compact form. For 

fourth order it is used  (𝜅1, 𝜅2) = (1/3,1), for third order it is used (𝜅1, 𝜅2) = (1/3,0) and for second order it is 

used (𝜅1, 𝜅2) = (−1,0). The term 𝜒(𝑟) in eq. (6) and eq. (7) is the van-Leer limiter and can be expressed as 

 χ(r) =
r + |r|

1 + r
 where r =

∆∗𝜙
𝑖+

1

2

∆∗𝜙
𝑖−

1

2

  (10) 

Thus, numerical fluxes are calculated using an HLL approximation for the Riemann solver 

𝝓(𝝍𝑳, 𝝍𝑹) = {

𝝓(𝝍𝑳)         

𝝓∗(𝝍𝑳, 𝝍𝑹)

𝝓(𝝍𝑹)         

 

if SL ≥ 0
          if SL < 0 < 𝑆𝑅

if SR ≤ 0
 (11) 

The wave velocities of the Riemann solver on the cell faces (𝑆𝐿 and 𝑆𝑅) are given by 

𝑆𝐿 = min(�⃗� 𝐿 ∙ 𝒏 − 𝐶𝐿 , 𝑢∗ − √𝜑∗) (12) 

𝑆𝑅 = max(�⃗� 𝑅 ∙ 𝒏 + 𝐶𝑅, 𝑢∗ + √𝜑∗) (13) 

where 𝑢∗ and 𝜑∗ are estimated as: 

 𝑢∗ =
1

2
(�⃗� 𝑅 + �⃗� 𝐿) ∙ 𝒏 + 𝑐𝐿 − 𝑐𝑅 and  √𝜑∗ =

𝑐𝐿 + 𝑐𝑅

2
+

(�⃗� 𝑅 + �⃗� 𝐿) ∙ 𝒏

4
  (14) 

where 𝒏 is the normal vector at the face of the cell and (𝑐𝐿 , 𝑐𝑅) are the wave speed calculated at the left and right 

interfaces of the cell, respectively. In the y direction it follows the same procedure, where the sub-index 𝑖 becomes 
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𝑗 and the cell faces are the top (𝑇) and bottom (𝐵). 

The temporal integration methods used in the acoustic wave model are based on the Runge-Kutta methods 

modified by Gottlieb [13]. This method consists of the third order approximation to preserve the stability of the 

Runge-Kutta scheme (Strong Stability-Preserving - SSP). Thus, we have 

𝝍(1) = 𝝍(𝑛) + ∆𝑡(−∇ ∙ 𝛟(𝝍(n)) + 𝑺(1)) (15) 

𝝍(2) =
3

4
𝝍(𝑛) +

1

4
[𝝍(1) + ∆𝑡(−∇ ∙ 𝛟(𝝍(1)) + 𝑺(2))] (16) 

𝝍(𝑛+1) =
1

3
𝝍(𝑛) +

2

3
[𝝍(2) + ∆𝑡(−∇ ∙ 𝛟(𝝍(2)) + 𝑺(𝑛+1))] (17) 

where the superscript 𝑛 indicates the present time level and the superscripts (1) and (2) indicate the intermediate 

stages of the Runge-Kutta multistep integration. For efficiency in numerical stability of the acoustic wave model, 

the model was implemented following the Shi [7] and Liu [8] method for gravity waves using an adaptive time 

step (∆𝑡), following the Courant-Friedrichs-Lewy (CFL) criterion 

∆𝑡 = 𝐶𝑟𝑚𝑖𝑛 [𝑚𝑖𝑛 (
∆𝑥

|𝑢𝑖,𝐽| + 𝑐
) ,𝑚𝑖𝑛 (

∆𝑦

|𝑣𝐼,𝑗| + 𝑐
)] (18) 

where 𝐶𝑟 is the Courant number and 𝑐 is the acoustic wave celerity. 

When the wave reaches a solid wall, it will be reflected completely. For a fully reflective boundary condition 

with a normal vector to wall 𝒏, the boundary conditions are given by 

�⃗� ∙ 𝒏 = 0  and  𝛻𝑃 ∙ 𝒏 = 0 (19) 

For the Absorbing Boundary Condition (ABC) the method found in Cerjan [14] was used. In this method, 

the variables 𝝍 are gradually reduced after each time step until reaches zero in the numerical grid boundaries. The 

equations for this attenuation is given by 

𝝍 = 𝝍𝑒−[𝛾𝑛𝑏𝑐(𝑛𝑛𝑏𝑐−𝑑𝑛𝑏𝑐)]
2
 (20) 

where 𝛾𝑛𝑏𝑐 is a damping factor, 𝑛𝑛𝑏𝑐 is the number of points used for the damping layer and 𝑖𝑛𝑏𝑐 is the number of 

points in a position (𝑖, 𝑗) of the boundary. 

4  Results e Discussion 

4.1 Case Study of Reflective and ABC Conditions 

This case represents the propagation of an acoustic wave with a cutoff frequency of 40𝐻𝑧 located in the 

center of a 300𝑚 ×  500𝑚 rectangular domain. The cells of the computational mesh have homogeneous faces 

with 1𝑚 edges, totaling 300 × 500 cells from the computational domain. Two simulations were performed, the 

first with reflection in all grid boundaries and the later with absorbing only on the sides of the boundary. The wave 

speed and density are considered homogeneous in the whole domain, with values of 1400𝑚/𝑠 and 1000𝑘𝑔/𝑚3. 

Respectively. For the time discretization, a 𝐶𝐹𝐿 value of 0.5 was used, with a total simulation time of 1.0𝑠. 

Figure 1 show the results of the simulation for fully reflective condition – Fig.1a and ABC condition – Fig. 

1b, comparing with the results of Santos [15]. The results showed that the absorbing boundary conditions were 

effective in the treatment of reflections caused by the boundaries of the numerical domain. The need to 

significantly extend the numerical domain to represent the domain of interest is reduced using this boundary 

condition. As the implemented algorithm adds virtual cells to the ABC layers, the domain is visualized as if it were 

with open boundary. For this example, 50 virtual cells were added to each boundary. 



F. P. Piccoli, L. C. de Jesus, J. T. A. Chacaltana 

CILAMCE 2020 

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC 

Foz do Iguaçu/PR, Brazil, November 16-19, 2020 

 

 

Figure 1. Snapshots of the different boundary conditions, (a) represents the fully reflective condition and (b) the 

ABC condition. The results are compared with those obtained by Santos [15]. 

4.2 Schematic geological structures 

This case study consists of several domains with layers of different wave speeds (Santos [3]). These schemes 

represent the propagation of an acoustic wave with a cutoff frequency of 80𝐻𝑧 located at the coordinates (𝑥, 𝑦) =
(550𝑚, 0𝑚). The cells of the computational mesh have faces with 2𝑚 edges, totalizing 550 × 300 cells of 

computational grid. In the domain boundaries, non-reflective boundary conditions (ABC) were applied. The wave 

speed varies from 2000𝑚/𝑠 to 4000𝑚/𝑠, with a homogeneous density of 1000𝑘𝑔/𝑚3. For the time 

discretization, a 𝐶𝐹𝐿 value of 0.5 was used to calculate the time step, with a total simulation time of 0.5𝑠. Figure 

2 shows the schematic model for all cases to study with hypothetical geological basins. Figure 2a, represents a 

domain with two layers of different wave speeds, Fig. 2b shows a stratified wave speed field separated into 4 layers 

with a rectangular high speed wave intrusion at the center of the domain, Fig. 2c represents a schematic geological 

fault and the Fig. 2d show a geological basin with different acoustic wave speeds. 

The synthetic seismogram calculated from the model results are shown in the second column of the Fig. 2. 

In the Fig. 2e, the reflections produced by the interfaces of different wave speeds are clearly reproduced by the 

acoustic wave model developed in this work. In the seismogram shown in the Fig. 2f, the events caused by the 

high-speed intrusion are clearly identified. This example is important because it is possible to detect domes of 

different materials along the depth of the substrate. In the Fig. 2g the representations of the schematic geological 

faults are identified in the seismogram, where inclined portions generate reflected regions with asymmetric 

intensity in the seismogram. In the Fig. 2h, the schematic geological basin is clear from the reflections captured 

by the synthetic seismogram. 

  

Figure 2. Domains with different acoustic wave speeds for testing the numerical model. 
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4.3 Salt Dome Model  

This example uses data published by Bulant [16], a case study from Hess Corporation, which consists of a 

stratified domain for acoustic wave speeds and with a body of salt with constant acoustic wave speed (Fig. 3). The 

data were interpolated to a computational grid with 712 × 520 cells with 20𝑚 edges. The acoustic pulse was 

located at (𝑥, 𝑦) = (5000,0)𝑚 coordinates with a cut-off frequency of 20𝐻𝑧. The total simulation time was 6𝑠  

with a CFL of 0.5, time needed for the wave to propagate and reflect in all layers of the domain. The source is 

generated in a medium with characteristic water acoustic wave speed (~1500𝑚/𝑠) and the pulse is directed to the 

substrate with different layers of wave speed (1500𝑚/𝑠 < 𝑐 < 3000𝑚/𝑠), the highest acoustic wave speed being 

located in the Salt Dome (> 4500𝑚/𝑠). 

The seismogram of the modeling results (Fig. 4) shows the reflections generated in the substrate layers, 

pointing to a greater intensity of reflection recorded around 3.5𝑠, referring to the reflection of the dome recorded 

by the geophone. Figure 4 also shows 4 snapshots referring to the propagation of the acoustic wave from the 

generation point to the return of the wave reflected by the dome. In snapshots of the Fig. 4 we observed an 

agreement with wave reflected by the salt dome and the seismogram. 

 

Figure 3. Acoustic wave speed field for a salt dome case. Model from Hess Corporation. Source: Bulant (2000). 

 

Figure 4. Seismogram, larger graphic on the left, and snapshots of the P-wave, small graphics on the right, of the 

results of the non-linear model for the salt dome of Hess corporation (Bulant [16]). The dashed line represents 

the variation of the wave speed between water and substrate and the continuous line indicates the position of the 

salt dome. 

5  Conclusion 

In this work, a nonlinear model of acoustic waves was developed using a hybrid technique of finite volumes 

and finite differences, adapted from a gravity wave model (Shi [7]). The model has good numerical stability, where 

the stability criteria (CFL) was used to calculate the variable time step for the simulation, allowing less 

computational time for the simulations. The MUSCL-TVD method with Riemann and HLL solver improved the 
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results, enabling the reduction of numerical noises generally generated by finite difference techniques with first 

order derivatives, without the need for numerical filters. 

Several acoustic wave modeling studies use the second derivative of a Gaussian function as the generating 

source, due to the second derivative nature of the mathematical formulation of the pressure wave. Here, 

approximations of the acoustic wave were used in the Navier-Stokes equations, where the mathematical 

formulation presents a set of equations based on the Laws of Conservation of mass and Momentum. Thus, the 

source term used was the first derivative of a Gaussian function in time. The generating source shown a good 

behavior in comparison with the literature, however there is still a need for a better formulation in future works 

for the generating source in this system of equations. 

The results of the simulation of the nonlinear model of acoustic waves, proved to be consistent and with a 

good qualitative representation of the tested cases with the identification of the main physical effects caused on 

the wave behavior along vertical layers of different materials (different wave speeds). For future work, it is 

important to implement the Reverse Time Migration (RTM) technique to generate the substrate imaging and, thus, 

determine the configuration of the vertical layers of the physical domain. 
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