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Abstract. This work investigates the influence of using different time integration methods for the mixed finite 
element formulation of tridimensional unsteady incompressible fluid flow problems governed by the Navier-
Stokes equations. A classical Eulerian approach is followed to describe the fluid. A Newton-Raphson scheme is 
devised to solve the resulting non-linear equations within every time step of the time integration. In order to 
ascertain the accuracy and efficiency of the adopted methods, numerical simulations of tridimensional unsteady 
flow of an incompressible fluid around a cylinder are analyzed and compared against benchmark solutions. 
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1  Introduction 

Simulating the behavior of fluid flow is one of the greatest challenges for researchers in the field of 
Computational Fluid Dynamics (CFD). The difficulties are numerous, ranging from numerical instabilities (due 
e.g. to the LBB compatibility condition or the convective non-linear term) to expensive run-time consuming 
processes (due to the iterative solution of large systems of equations), to mention just a few. Much effort has been 
devoted to overcome these difficulties in the past decades (see e.g. Brooks and Hughes [1], Hughes and Franca 
[2], Donea and Huerta [3], Gelhart, et al. [4], Brezzi and Fortin [5], Taylor and Hood [6], Tezduyar and Osawa 
[7]). When it comes to unsteady three-dimensional problems, however, even in the laminar case, the simulation is 
still a very challenging task (Bayraktar, Mierka and Turek [8]). 

In this work, the focus is to assess the performance of some of the existing time integration methods when 
applied to the modeling of tridimensional unsteady incompressible fluid flow problems. In particular, we aim to 
investigate two implicit schemes, namely, (i) the backward Euler and (ii) the Newmark [9]. Irrespective of the time 
integration, in all cases spatial discretization is achieved by adopting a mixed finite element formulation within a 
standard Galerkin framework. We use higher order tetrahedral and hexahedral finite elements with quadratic and 
linear shape functions to interpolate the velocity and pressure fields, respectively, which satisfies the LBB-
condition (see e.g. Wieners [10], Burman and Fernández [11]). Our model is based on an Eulerian description, 
which allows us to avoid re-meshing or mesh adaptation during the course of the solution. Flows with low to 
moderate Reynolds numbers are considered in our simulations, in order to overcome possible numerical 
instabilities that may arise in convective-dominated problems. The non-linearity of the formulation is handled 
through a fully consistent Newton-Raphson scheme wherein full quadratic convergence is ensured. 

We emphasize that this work is still in progress and the report presented in this article are only our partial 
results. We are currently implementing the other time integration methods (e.g. generalized- method), as done 
by Dettmer and Peric [12]. Our aim, in a next step towards the simulation of more complex 3D fluid flows, 
including convection-dominated problems, is to stick to the method which showcases the best compromise 
between performance and accuracy in the context of three-dimensional transient flows. 
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2  Fluid equations 

The conservation of linear momentum of an infinitesimal fluid particle of mass dm  for incompressible 
viscous flows governed by the Navier-Stokes equations is given by  

 div ,d
dt

  u T b   (1) 

where  ,u ,T and b  are the fluid´s mass density, velocity, Cauchy stress tensor and volumetric force per unit 
mass, respectively. For incompressible fluids, the mass conservation principle leads to 

 div 0.u   (2) 

Considering a Newtonian fluid and an Eulerian description of the flow, the differential equations can be 
expressed as  
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where   is the fluid´s kinematic viscosity, 
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is the strain rate tensor, p  is the fluid´s kinematic pressure and   is the flow´s domain. In order to have equation 
(3) well-posed, it is necessary to impose the boundary and initial conditions as follows 
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where n  is the unit outward normal vector to the boundary, t and u  are the prescribed traction and velocity 
vectors, respectively, and 0u  is the initial velocity. The weak form of the Eq. (3) is given by 

              div div  , ; , , , , , , , ,
t

c a p q q            w u u w u w u w u w t w b w   (6) 

where w and q  are arbitrary test functions for the velocity and pressure fields, respectively. In (6), the notation 

 , 
   means integral of the dot product of the corresponding variables over the flow domain, whereas 

      and  ; , , :c d a d  
        u w u w u u w u w u   (7) 

are trilinear and bilinear forms of the convective and viscous terms, respectively. The boundary term over u
vanishes due the fact that w 0  along  . 

3  Time discretization and temporal integration scheme 

There are several numerical methods which can be used to discretize and integrate eq. (6) in time. See, for 
instance, Dettmer and Peric [12], where the authors promote an extensive discussion and comparison of several 
time integration algorithms. In the present work, which is in its first stages as said in the introduction, we will 
briefly outline the Newmark [9] and backward Euler schemes next. These methods were implemented in our (in-
house) code and its performance is verified through a numerical example in section 5. 

3.1 Newmark and Backward Euler Method 

In temporal discretizations, the time variable is discretized into time instants nt , separated by intervals t , 
such that 1n nt t t     is the time instant immediately after nt . In the Newmark [9] method, the acceleration 
of the fluid at time 1nt   can be expressed as 
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where   is the Newmark´s integration parameter, and where superscript notation is adopted to denote the time 
instant at which the corresponding variable is referred to. Here, we use 1 2   in order to archive second-order 
accuracy in the integration. Introducing eq. (8) into eq. (6) we arrive at the time-discrete weak form as follows 
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Note that if we use 1   in eq. (8), we obtain 
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which is exactly the backward Euler scheme. Then, the time-discrete weak form of eq. (6) for backward Euler is 
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4  Spatial discretization 

We perform spatial discretization of eq. (9) by a standard mixed finite element scheme where the velocity 
and pressure fields are the primitive variables of the problem. The fluid domain is discretized with tetrahedral or 
hexahedral elements, possessing quadratic shape functions for the velocity field and linear shape functions for the 
pressure field. We write the finite element approximations as 
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where vN  and pN  are matrices with the element´s shape functions of the velocity and pressure fields, respectively, 
and ev and ep are the element´s nodal values of velocity and pressure, respectively. Applying (12) into (9) we 
reach the algebraic matrix form of the problem as follows 
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where M ,C ,K ,G and TG are the mass matrix, convective matrix, viscous matrix, gradient operator and 
divergent operator, respectively. Still in eq. (13), 1nf is the vector of the field forces and boundary conditions. 
Equation (13) is non-linear due to convective term, and its solution is pursued here through a Newton-Raphson 
scheme wherein full quadratic convergence is warranted. For detailed information about its numerical derivation 
and implementation, the interested reader is referred to Gomes and Pimenta [13]. The eq. (13) can be easily rewrite 
for backward Euler just applying 1   in it, as mentioned in section 3. 

5  Numerical examples 

5.1 3D Laminar flow around a cylinder  

This example is a classical benchmark in the CFD community (see e.g. Schäfer and Turek [14], Bayraktar, 
Mierka and Turek [8], Turek and Schäfer [15]). It consists of a three-dimensional laminar flow around a cylinder 
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with circular cross-section within a narrow channel. The geometry and the boundary conditions are illustrated in 
Figure 1. 

 

Figure 1. Geometry and boundary conditions for 3D laminar flow around a cylinder with circular cross-section 
(figure from Schäfer and Turek [14]). 

The fluid velocity profile at the inflow section of the channel is 

     
4

16
0, , , 0mU yz H y H z

U y z V W
H

 
     (14) 

where  m/s2.25mU   and  m0.41H  , from which the Reynolds number is Re 100 . The kinematic 
viscosity is defined as  m /s3 210  , and the fluid density is  kg/m31.0  . The time interval used in this 
example is 0 4.0t s  . Notation for the velocity components is    1 2 3, , , ,u u u U V W  and the boundary 
condition at outflow plane is zero traction. The convergence tolerance used within the Newton-Raphson iterations 
is TOL 610 . Figure 2 shows the finite element mesh used herein. 

 

Figure 2. Finite element mesh used, 67533 tetrahedral elements and 96684 nodes. 
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Three different t were used in order to assess the convergence of the results only for Newmark [9], namely: 
0.01t s  , 0.02t s  e 0.005t s  . Visually there was no significant difference in results between t , 

therefore, Figure 3 shows some results in velocity and pressure fields for a qualitative assessment of the results 
only for 0.01t s  . Hotter colors indicate higher values. 

 
Figure 3. Velocity and pressure fields for Re = 100 (t = 0.01s). 

For a quantitative assessment, the evolution in time of pressure difference ( P ), the drag (Cd) and lift (Cl) 
coefficients were evaluated applying Newmark [9] and backward Euler schemes for 0.005t s  . We used a 
refined mesh only around the cylinder using hexahedral elements as shown in Figure 4 to reach better results.  

 
Figure 4. (a) - Finite element mesh used to evaluate P , Cd and Cl coefficients (6200 hexahedral elements and 

54348 nodes); (b) - Detail of the mesh around the cylinder. 

The pressure difference was evaluated at the points      0.45, 0.20,0.205 0.55, 0.20, 0.205 .P t P P  
The results for pressure difference are shown in Figure 5. 
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Figure 5. Graphic of P for Newmark [9] and backward Euler schemes. 

The results for Cd and Cl coefficients are shown in Figure 6. After the problem stabilization, these results 
were compared with Schäfer and Turek [14] as we can see in Table 1. 

 
Figure 6. (a) - Graphic of Cd x time; (b) - Graphic of Cl x time. 

Table 1. Cd and Cl coefficients. 

 

6  Conclusions 

This work presented our first result for 3D unsteady fluid flow governed by Navier-Stokes equations. As we 
already mentioned, this works is still in progress and we plan to investigate other aspects that may influence the 
results, for instance, the effect of the mesh refinement around the cylinder and other time integration scheme (e.g. 
generalized-α method). As concerned only to the Newmark [9] scheme, the results shown a good convergence 
between chosen t (see Figure 3). After the problem stabilization, the results regarding the P , Cd and Cl 
coefficients for Newmark [9] and backward Euler schemes also shown good agreement (see Figure 5, Figure 6 
and Table 1). Of course, we still have work to do but we understand that our result show that we are at the right 
direction. 
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