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Abstract. Different damage models in peridynamics have been proposed to predict dynamic fracture of brittle
materials. The prototype micro-brittle (PMB) material and its modified version, the DTT model, concern a bond-
based constitutive model together with bond-breakage damage criteria. These models consider only the elongation
of peridynamic bonds with fixed Poisson’s ratio. To circumvent this limitation, the state-based model LSJ was
recently proposed, which incorporates a dilatation term in its constitutive relations. It concerns an interaction-
breakage damage criterion that has two distinct damage factors, one associated with elongation and the other one
with dilatation. We modify the LSJ model to obtain bond-breakage damage criteria, called the LSJ-T model. In
addition, we also introduce bond-breakage criteria in a two-dimensional ordinary, state-based peridynamic model,
which we call the LPS-T model. To compare the crack propagation paths obtained numerically from these damage
models, we consider a thin glass plate with an initial semi-crack under mode I loading. Overall, the models were
able to grasp the main characteristics of crack propagation, such as crack propagation speed, branching, and crack
pattern. The modified version LSJ-T and DTT were the only ones presenting symmetry and no arrested branches
in the crack paths, indicating a numerically stable crack propagation.
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1 Introduction

The peridynamic theory is an extension of the classical continuum mechanics theory and is characterized
by the integration of the interaction forces between near particles separated by finite distances. These forces
depend upon the relative displacements and positions between material points within a body, rather than the spatial
derivatives of displacements that are used in classical constitutive relations. Since spatial derivatives are not used,
the peridynamic governing equations are valid everywhere in the body, including crack tips and corners.

This new theory was proposed by Silling [1], and it allows for the possibility of considering non smooth
functions as candidates for solutions of non smooth problems, such as fracture mechanics problems, where the
displacement fields may not even be continuous across crack surfaces. Silling & Askari [2] use a mesh-free
numerical method to implement the prototype micro-brittle material (PMB), which is a bond-breakage damage
model that yields a good approximation for the fracture energy release rate of classical fracture mechanics. In
this model, force and damage functions are discontinuous, which have caused some mathematical difficulties. To
obtain a well-posed peridynamic problem, Du et al. [3] propose a modified version, here called the DTT model,
which considers that force and damage functions are continuous and piecewise linear functions. Even though these
models were able to grasp important features of brittle fracture, they are bond-based peridynamic models, which
means that they only consider the strain state of a bond to compose its response, which, in turn, leads to a fixed
value for the Poisson’s ratio.

A more general theory that takes into account both the dilatational and deviatoric parts of the peridynamic
strain state field was proposed by Silling et al. [4] and is called the state-based peridynamic theory. In particular,
they introduce the linear peridynamic solid material (LPS) model, which contains material constants that do not
require the Poisson’s ratio to be fixed. Silling & Askari [5] use the LPS model to formulate a damage model to
study fatigue failure in peridynamics. They add bond-breakage damage by bringing to zero the force in a bond
when a damage criterion is met. Later, Lipton et al. [6] introduce a damage model, here called the LSJ model,
for an isotropic linearly elastic material that depends on two unrelated damage criteria and yields a well-posed
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peridynamic problem. Their bond force is zero only when both the damage criteria are met. However, it’s not yet
clear how one of their damage criteria, which is related to the hydrostatic strain, is connected to physic principles
behind fracture dynamics. Further, since this latter criterion is unrelated to the other damage criterion, which
considers the bond elongation, a broken bond in terms of elongation may still present reminiscent forces, and thus
bond-breakage conditions, which require a zero force in broken bonds, are not met.

The main focus of this work is the modeling of dynamic fracture of solids made of brittle materials using
state-based damage models. We introduce modifications into the 2D version for the LPS, obtained by Le et al. [7],
and for the LSJ from Lipton et al. [6], which we call the LPS-T and the LSJ-T models, respectively, and use
these models together with the PMB and DTT models to simulate crack propagation in a thin glass plate under
mode I crack opening. The LSJ-T model modifies the original LSJ model by considering bond-breakage damage,
which suits better brittle fracture, rather than interaction-breakage. In the same way, the LPS-T model modifies the
original damage-free 2D LPS model in Le et al. [7] to consider bond-breakage. It can be seen as the state-based
counterpart of the DTT model.

The other sections of this work are briefly discussed below. In Sec. 2 we provide a theoretical background
on modeling of damage using peridynamics. In Sec. 3 we present details of the numerical implementation of the
damage models, the results of the numerical simulation of the mode I crack opening of a thin glass plate, and a
discussion of these results against well known results from the literature. Lastly, in Sec. 4, we recap the main results
of this work and give concluding remarks regarding the advantages and disadvantages of the modified state-based
models in simulating brittle fracture against their bond-based counterparts.

2 Theoretical background

Let B ⊂ E2 be the reference configuration of a solid body at time t = 0 and χ(x, t) be the position of point
x at time t, with E2 being the two-dimensional Euclidean space. Let also Nδ be a δ-neighborhood of x, where, in
peridynamics, the radius δ is called the horizon. Here, Nδ is a circle of radius δ centered at x. The relative position
vector ξξξ = x′ − x is called a bond and the set of all bonds is denoted by Hδ .

A peridynamic state is a tensorial function of the form A(x, t) 〈·〉 : Hδ → Lm, where Lm is the set of m-th
order tensors; if m = 1, the state is a vector and, if m = 0, a scalar. In peridynamics, deformation measures are
defined in terms of difference displacement fields, which are defined through u 〈ξ〉 ≡ η = u(x + ξ)− u(x).Thus,
the strain state (sometimes called the relative elongation state) of a bond ξξξ at x, is the counterpart of the normal
strain from classical continuum mechanics and is defined through

s 〈ξ〉 = e 〈ξ〉
|ξ| , e 〈ξ〉 ≡ |η + ξ|− |ξ| . (1)

We can obtain the infinitesimal normal strain state by linearizing eq. (1), thus obtaining

ε 〈ξ〉 = ξ · η
|ξ|2 . (2)

The peridynamic equation of motion is given by

ρ ü(x, t) =
!

Nδ

f(x, x′, u, t) dVx′ + b(x, t), (3)

where ü(x, t) is the acceleration of point x ∈ B at time t, ρ is the mass density, f is the interaction force function in
the peridynamic bond between the points x and x′, and b is the body force density. We may interpret the integral
term as the sum of the contribution forces that all the points within the δ-neighborhood of point x exert on x itself.
Here, the unit of the interaction force f is force per volume squared.

In this work, we consider isotropic elastic materials. The PMB material model, proposed by Silling &
Askari [2], is a suitable constitutive relation between the interaction force f and the difference displacement field
u, which is given by

f(x, x′, u) ≡ f̂(ξ,η) = f 〈ξ〉 e 〈ξ + η〉 , f 〈ξ〉 = µ(s∗ 〈ξ〉) c 〈ξ〉 s 〈ξ〉 (4)

where f̂ is the pairwise force function, e 〈ξ + η〉 is the unitary vector in the direction of the deformed bond ξ+η, f
is the pairwise force scalar state, the scalar state c 〈ξ〉 is the micro-modulus function, µ : R → [0, 1] is the damage
factor function and s∗ is the maximum relative elongation the bond underwent until the evaluation time, i.e.

µ(s∗) =

"
#

$
1, s∗ < Sc,

0, s∗ ≥ Sc,
s∗(x, t) 〈ξ〉 = max

0≤l≤t
(s 〈ξ〉) , (5)
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where Sc is the critical relative elongation. By using the history of the elongation as argument, the damage factor
enforces irreversible breakage of a bond. Thus, once it is broken, it remains broken, having zero force thereafter.
The micro-modulus function can be expressed as

c 〈ξ〉 = C ω(|ξ|)|ξ|, C =
6E

m
, (6)

where ω(|ξ|) is a generic influence function, E is the Young’s modulus, and m is the weighted volume given by

m =

!

Hδ

ω(|ζ|)|ζ|2 dVζ . (7)

In this work, we consider ω(|ξ|) = ωδ(|ξ|)/|ξ| for |ξ| ≤ δ and ω(|ξ|) = 0, otherwise, where ωδ is the conical
influence function, given by

ωδ(r) = 1− r

δ
. (8)

Du et al. [3] propose a modified version of the PMB model, here called the DTT model, to formulate a well-
posed peridynamic problem. They consider that both the force scalar state and the damage factor are continuous.
Instead of eq. (4.b), their modified DTT pairwise force scalar state is

f = µ(s∗) c F (s), (9)

where the bond dependence is omitted for simplicity, c is given by eq. (6),

F (x) =

"
%%%%%%#

%%%%%%$

S−
0

x−S−
1

S−
0 −S−

1

, if x ∈ (S−
1 ,S−

0 ),

x, if x ∈ [S−
0 ,S+

0 ],

S+
0

S+
1 −x

S+
1 −S+

0

, if x ∈ (S+
0 ,S+

1 ),

0, otherwise,

µ(x) =

"
%%%#

%%%$

1, if x ∈ [−1,S+
0 ),

S+
1 −x

S+
1 −S+

0

, if x ∈ [S+
0 ,S+

1 ),

0, otherwise,

(10)

and

S+
0 = 0.95Sc, S+

1 = 1.05Sc, S−
0 = −0.98, S−

1 = −0.99. (11)

Both the PMB and the DTT models are bond-based models, which implies that the Poisson’s ratio ν has a
fixed value that is equal to 1/3 for the plane stress conditions considered in this work. For the more complete
state-based theory, for which the Poisson’s ratio is not fixed, the interaction force function f that appears in eq. (3)
is of the form f(x, x′, u) = T(x, u) 〈ξ〉−T(x′, u) 〈−ξ〉 ,where T(x, u) 〈ξ〉 and T(x′, u) 〈−ξ〉 are force vector states
evaluated on bonds ξ and −ξ, respectively, and acting at the points χ(x) and χ(x′) in the deformed configuration
χ(B). Ordinary state-based materials have their force vector state acting along the direction of the deformed bond,
which can be written in the form

T(x, u) 〈ξ〉 = t 〈ξ〉 e 〈ξ + η〉 , (12)

where t is the force scalar state. A state-based model commonly used in peridynamics is the LPS model proposed
by Silling et al. [4]. It contains both dilatational and deviatoric parts of the peridynamic deformation state in its
constitutive response. For plane stress conditions, Le et al. [7] show that the force scalar state t in (12) is given by

t 〈ξ〉 =
2 (2 ν − 1)

ν − 1

&
ĉ1θ −

ĉ2
3

!

Hδ

ω(|ζ|)ed 〈ζ〉 |ζ| dVζ

'
ω(|ξ|) |ξ|

m
+ ĉ2 ω(|ξ|) ed 〈ξ〉 , (13)

where ĉ1 = E/ [3(1− 2ν)] + E/ [18(1 + ν)] (ν + 1)2/(2ν − 1)2, ĉ2 = 8E/[2m (ν + 1)], with m being the
weighted volume given by eq. (7), ed = e− θm

3 is the deviatoric part of the elongation state e, and

θ(x, u) =
2(2ν − 1)

ν − 1

1

m

!

Hδ

ω(|ζ|) |ζ| e 〈ζ〉 dVζ (14)

is the dilatational part of e, which can be seen as the peridynamic counterpart of the hydrostatic strain in classical
linear elasticity. In this work we modify the force scalar state in eq. (13) to introduce bond-breakage damage as

tLPS-T 〈ξ〉 =
(c1
m

θdam + c2 F (s)
)
µ(s∗)ω(|ξ|) |ξ| , (15)
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Modeling and numerical simulation of crack propagation using peridynamics

where c1 = E (1− 3 ν)/[(ν + 1) (2ν − 1)], c2 = ĉ2 = 8E/[2m (ν + 1)], and

θdam(x, u) =
2(2ν − 1)

ν − 1

1

m

!

Hδ

ω(|ζ|) |ζ|2 s µ(s∗)dVζ (16)

is the dilatation including damage and s is the elongation state introduced in eq. (1). Thus, we consider the concept
of bond-breakage damage used in Silling & Askari [5], by requiring that the force vector state T 〈ξ〉 be null if the
bond ξ is broken since, for µ(s∗) = 0, tLPS-T 〈ξ〉 = 0 in eq. (15). We refer to this model as the LPS-T model.

Another model used in this work is derived from the linearized state-based damage model proposed by Lipton
et al. [6], here called the LSJ model. This model has two unrelated damage factors: one of them depends on the
bond elongation while the other one depends on the dilatation on the points connected by the bond. The model
presents interaction-breakage damage conditions, which here means that the breakage of bond requires the failure
of not only the bond itself, but of a collection of bonds around it. In order to enforce bond-breakage damage, which
suits brittle fracture, we modify the LSJ model to propose a linearized constitutive relation for the force vector state
in eq. (12), which is given by

TLSJ-T 〈ξ〉 = tLST-T 〈ξ〉 e 〈ξ〉 , (17)

tLSJ-T 〈ξ〉 =
(c1
m
µ̃(ε 〈ξ〉) θ̃dam + c2 ε 〈ξ〉

)
µ̃(ε 〈ξ〉)ω(|ξ|) |ξ| , (18)

where

θ̃dam =
2(2ν − 1)

ν − 1

1

m

!

Hδ

ω(|ξ|) |ξ|2 ε µ̃(ε)dVξ, µ̃(ε) = h

&! t

0

js(ε 〈ξ〉)dτ
'

(19)

are the linearized dilatation and the model’s damage function, respectively. In eq. (19.b), we have that

h(x) =

"
%%%#

%%%$

exp
(
1− 1

1−(x/xc)2.01

)
, ∀x ∈ (0, xc),

1, ∀x ≤ 0,

0, ∀x ≥ xc,

js(x) =

"
#

$

(x/Sc−1)5

1+(x/Sc)5
, ∀x ∈ [Sc,∞] ,

0, otherwise,
(20)

where, here, xc = js(1.05Sc) δt, with δt being the time increment in the numerical simulation. We refer to this
model as the LSJ-T model. It is worth mentioning that, whilst the LSJ model proposed by Lipton et al. [6] has
two unrelated damage factors, one for failure due to bond stretch and the other one for failure due to dilatation,
the latter is not dominant in bond-breakage conditions and, for this reason, is not introduced in the constitutive
relations of the LSJ-T model above. It is also worth noticing that the main differences between the LSJ-T and the
LPS-T models lie on the definition of their damage factors and on the linearity of the constitutive relations of the
LSJ-T model, inherited from the LSJ model.

In order to find the critical relative elongation state Sc, let us consider a homogeneous body subjected to
isotropic extension (η = s ξ). Bonds that cross a fracture surface cannot sustain any forces and are, therefore,
broken. The energy per unit fracture length for complete separation of the two halves of the body is called the
fracture energy. In 2D, Ha & Bobaru [8] evaluate the fracture energy G0 as the energy required to break all bonds
as the crack advances a unit length. For a PMB bond-based model, this fracture energy is given by

G0 = 2

! δ

0

! δ

z

! arccos(z/ξ)

0

C ω(ξ) ξ2
S2
c

2
ξ dφ dξ dz, (21)

where ξ = |ξ|. Using eq. (21) together with the conical influence function given by eq. (8), it can be shown that

Sc =

*
5πG0

9E δ
. (22)

For the state-based models, we propose to find the critical relative elongation by using a similar argument as
for the PMB, which consists of equating the strain energy expended by a crack advancing a unit length with the
fracture energy G0 through

G0 = 2

! δ

0

+! δ

z

! arccos z/ξ

0

c2 ω(ξ) ξ
2 S2

c ξ dφ dξ + c1

,
2(2ν − 1)

ν − 1

1

m

! δ

z

! arccos z/ξ

0

ω(ξ) ξ2 Sc ξ dφ dξ

-2.
dz

= [c1 I1 + c2 I2]S
2
c , (23)
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where I1 and I2 correspond to the integrals multiplying the material constants c1 and c2, respectively. If ν = 1/3,
c1 = 0 and eq. (23) reduces to eq. (21). For Poisson’s ratios different from 1/3, we have an extra-term c1 I1
that accounts for the energy lost by the dilatational term. The evaluation of I1 is complex and requires numerical
integration techniques. It can be shown, however, that, for ν ∈ (0, 0.5), c2I2 >> c1I1. Therefore, we can derive
an expression for Sc considering only c2 I2, yielding, for a conical influence function,

Sc =

*
5 (1 + ν)πG0

12E δ
. (24)

3 Numerical implementation and results

In general, exact solutions of peridynamic problems are not known. To advance our understanding on the
subject and to obtain results of practical interest, it is necessary to find approximate solutions of these problems
by using a numerical method that is usually based on a quadrature scheme for the integrals together with a finite
difference technique for the differentiation in time of the displacement field.

To approximate the two-dimensional domain B introduced in Section 2, we consider a homogeneous grid,
denoted by BD, of spacing h in both x and y directions. More specifically, BD is the union of subdomains τi
with areas h2, densities ρi, and centroid positions xi ∈ B. Thus, the area of BD is the sum of the areas of the
subdomains and approximates the area of B, being equal to the area of B in the case of rectangular domains.

To discretize in time, let us define tn = tn−1 +∆t, n = 1, 2, . . ., in which the initial time t0 is usually zero
and ∆t is a time increment discussed below. The governing equation given by eq. (3) is spatially integrated using
a mid-point quadrature rule. Thus, at a point xi ∈ BD, the discrete governing equation can be written as

ρiün
i =

/

j∈Fi

fnij∆Vij + bn
i , (25)

where ün
i = ü(xi, tn), bn

i = b(xi, tn), Fi is a set of indices of quadrature points contained in the δ-neighborhood
of the ith-node, fnij = f(xi, xj , u, tn) is the interaction force between nodes with indices i and j ∈ Fi, and ∆Vij is
the partial area of the cell τj within the δ-neighborhood of the i-th node. For the evaluation of partial areas and of
the set Fj , we use an analytical method described in Seleson [9]. For the time integration of eq. (25), we use the
velocity Verlet scheme described in Parks & Plimpton [10]. Since this scheme is explicit, the time increment ∆ t
has to be small enough to ensure stability. In view of this, we use an adapted version of the maximum allowable
time increment proposed by Silling & Askari [2]. The simulations were run in MATLAB and the source code can
be found at https://github.com/TulioVBP/PDLAB.

To compare the different damage models introduced in Section 2, we have considered the propagation of
an initial crack in a plate under mode I loading, as depicted in Fig. 1, where we have considered the sudden
application of the traction load σ = 4MPa. To be consistent with the peridynamic theory, this load is converted
into an equivalent body force acting on nodes of the domain BD that are within a distance from both the top and
the bottom edges. In this work, this distance is δ. The crack propagation is measured by the damage index φ(x),
defined by

φ(x) = 1−

0
Hδ

H 〈ξ〉 dVξ0
Hδ

dVξ
, x ∈ B , (26)

where H 〈ξ〉 is the damage factor of a damage model considered in this work, which is given by eq. (5.a) for the
PMB model, eq. (10.b) for both the DTT and LPS-T models, and eq. (19.b) for the LSJ-T model. Thus, φ(x)
multiplied by 100 yields the percentage of broken bonds of point x. Points on the surface of a straight crack,
theoretically, have half of their bonds broken since they only terminate interactions with the half of the body across
the crack. If the crack isn’t straight, this index can reach values higher or slightly lower than 0.5.

The plate is made of soda-lime glass, with Young’s modulus E = 72GPa, Poisson’s ratio ν = 0.22, density
ρ = 2440 kgm−3, and fracture energy G0 = 3.8 Jm−2. In our simulations we consider a horizon δ = 1mm,
which is sufficiently small when compared to the dimensions of the plate. For the spatial integration, we consider
a mesh ratio d = h/δ = 4, which is a good tradeoff between numerical accuracy and computational cost. For the
time integration, we consider the time increment ∆t = 0.02 µs, with a final time tfinal = 30 µs.

In Fig. 2 we show damage color maps for the damage models (a) DTT, (b) LPS-T, (c) PMB, and (d) LSJ-T,
where the color vary from red, representing points with damage index greater than 0.5, to dark blue, representing
points with damage index close to zero. The captions for each model also contain the angle between the upper
crack branch of the first branching event and the horizontal mid line. For points x at the red regions in Fig. 2,
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Figure 1. Soda-lime glass under tensile test with a pre-existent crack.

(a) DTT - 25.4◦ (b) LPS-T - 27.7◦

(c) PMB - 25.4◦ (d) LSJ-T - 26.6◦

Figure 2. Damage maps of glass plate depicted in Fig. 1 after second crack branching.

φ(x) > 0.5, which means that the central lines of these red regions correspond to crack paths. For all the models,
a crack advances in a straight line before branching into two new branches. As the crack progresses after the
first crack branching, the phenomenon of double crack branching is well captured by the numerical crack patterns
as they resemble the experimental benchmark presented in Fig. 3 for a mode I loading experiment performed by
Bowden et al. [11] in a glass plate with an initial blunt notch. At the first crack branching, the opening angles for
the state-based models LPS-T and LSJ-T, given by, respectively, 27.7◦ and 26.6◦, are slightly larger than the angle
for both the DTT and the PMB models, given by 25.4◦, since the state-based models have different Poisson’s ratio
(ν = 0.22) than the bond-based models, in which the Poisson’s ratio is constrained to 1/3 (see Silling et al. [12]).

Although formulated as a symmetric problem, the numerical problem of crack propagation is not symmetric
because of round-off errors, which may cause crack path asymmetries that are exacerbated by the sensitivity
to small perturbations in unstable dynamic crack propagation (see Ha & Bobaru [11], Bobaru & Zhang [12]).
Pronounced asymmetry of crack pattern, observed in Fig. 2.(b) for the LPS-T model, and arrested crack branches,
observed in Fig. 2.(b) and Fig. 2.(c) for the LPS-T and PMB models, respectively, are features that suggest unstable
crack propagation. None of these features are observed in Fig. 2.(a) and in Fig. 2.(d), which suggests that the DTT
and LSJ-T models present the most stable crack propagation.

Abraham [13] states that the maximum theoretical speed a crack can propagate is the Rayleigh wave speed,
which is the sound wave speed in the material. This happens because, for the crack to be propagated, the necessary
energy to break the atomic bonds must be provided at the crack tip, and such energy is traveling in the material at

Figure 3. Experimental result obtained by Bowden et al. [11] for a glass plate with blunt pre-notch.
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Adar R. Aguiar, Túlio V. B. Patriota

the Rayleigh wave speed. In Fig. 4 we show the propagation speed of the crack tip normalized by the Rayleigh
wave speed of soda-lime glass, given by Cr ≈ 3180m s−1, plotted against the simulation time for the different
damage models considered in Fig. 2. We also show the constant line corresponding to 2Cr/3. In order to calculate
the propagation speed of the cracks, we track the farthest point to the right that has damage index greater than 0.3.
We have verified that values in the range (0.2, 0.4) do not change much the results of Fig. 4.

Figure 4. Crack tip propagation speeds for mode I loading on a plate with an initial semi-crack.

Experimental results for an amorphous material have shown that the crack propagation never reaches the
Rayleigh limit, losing stability and branching when reaching values of 0.35-0.65 of the Rayleigh wave speed
(see Döll [14], Ravi-Chandar & Knauss [15]). By comparing the velocity profiles, we note that they are similar
qualitatively. The normalized speed is zero until the time the crack starts propagating at about 4 µs. Thereafter,
the speed rapidly reaches the maximum expected speed and oscillates about this maximum speed until right after
the crack branching occurs at about 8 µs. It then starts decreasing until the time the crack stops branching at about
15 µs. At this time new cracks start propagating and, again, the speed reaches the maximum speed and oscillates
about this speed until the next branching occurs, at about 20 µs. Ramulu & Kobayashi [16] and Döll [14] have
shown that the decrease in the crack tip speed after the crack branching event is also observed experimentally.
Note that the maximum crack tip speed is slightly greater than 2/3Cr for all the models, but still smaller than the
Rayleigh wave speed. This high propagation speed can be related to the high traction forces considered. After
the second branching, it is not well defined which tip to follow, mainly for results with multiple arrested minor
branches; so the crack propagation speed is not interpreted there.

As a final remark, the computational costs of the simulations with the state-based models were, on average,
40% higher than their counterparts with the bond-based models. The additional computational time is due to extra
evaluations of dilatational terms in the state-based models.

4 Conclusions

In this work we have introduced two modified versions of state-based damage models found in the literature
that are suitable for brittle fracture modeling. We have validated the models with a benchmark experiment of
mode I loading and have shown that the new state-based models grasped well the characteristics of brittle fracture,
like the crack branching and crack propagation speed. The computational cost is, however, 40% higher than their
bond-based counterparts. In addition, the LSJ-T and DTT models are promising, as they seem to be more stable
than the other models, especially after the initiation of the second crack branching.
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