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Abstract. This work presents a computational framework for the simulation of problems wherein discrete solid 

particles may interact with thin flexible structures, such as beams, shells and membranes. The particles are assumed 

to be spherical, following a DEM (discrete element method) approach, whereas the flexible structures are described 

by large displacements/finite rotations kinematics, leading ultimately to large deformations finite element (FEM) 

formulations. The DEM model is implemented within a Fortran program called PSY (Particle System Analysis 

Program), and the FEM model within a C++ program called GIRAFFE (Generic Interface Readily Accessible for 

Finite Elements). Both are in-house codes that have been extensively developed by two of the authors in the past 

years. The models are coupled in a staggered, implicit way embedded within a time-marching integration scheme 

wherein the two codes communicate with each other in an efficient, run-time, memory-sharing way that truly 

boosts up computational performance. The aim of this work is to present the computational scheme devised to 

couple both models, which ultimately led to a unified project called GIPSY. A few possibilities of such robust 

DEM-FEM scheme are illustrated by means of numerical examples. 

Keywords: Particles, Flexible structures, Particle-Structure interaction, Discrete element method, Finite element 

method. 

1  Introduction 

Contact between rigid particles and deformable structures is a recurring phenomenon within several areas of 

study. It can occur in different ways, such as piles foundation settlement with the soil, conveyor belt ore transport, 

industrial painting, additive manufacturing, among other examples. It is a complex phenomenon, involving 

separate (although coupled) physics, with numerous action and reaction forces from multiple contact occurrences, 

with occasional shear forces (friction), which in turn can damage the material. The way that we can treat the contact 

physics depends intrinsically on the problem´s geometry. For example, in a conveyor belt transporting grains, there 

are two different types of material interactions, which are the grains, treated as rigid solid particles, and the 

conveyor belt, which can be treated as a continuum (structural) shell.  

In a general perspective, solid particles are used to describe granular and particulate materials, which Duran 

[1] defines as an agglomeration of discrete macroscopic solids which are in contact with each other most of the 

time. It is possible to see these materials in a number of human applications and natural phenomena, such as beach 

sands, food grains, construction materials, industrial powders and many others. For the study and modeling of 

these materials, the computer program PSY (Particle Systems Analysis Program) is being developed at the 

University of São Paulo by Prof. Eduardo M. B. Campello. PSY is conceived to serve as a programming 

environment and advanced simulation tool. It is written in Fortran 90/95/2003 and is fully based on the object-

oriented paradigm, with encapsulation, data processing, polymorphism, inheritance and operator loading. The 

kinematic and dynamic descriptions of the particles are based on a special formulation of the Discrete Element 
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Method (DEM), as proposed by Campello [2]–[4], and Campello and Cassares [5].  

To allow the study and computational modeling of contact between deformable bodies and, in particular, 

structures, the computer program GIRAFFE (Generic Interface Readily Accessible for Finite Elements) is being 

developed at the University of São Paulo by prof. Dr. Alfredo G. Neto. GIRAFFE is a computational platform 

written in C++ language, also under the object orientated concept, with use of virtual classes. Inside the program 

there are a number of contact and finite element models implemented for bars, beams, tubes, shells, point masses, 

rigid bodies, springs and dampers, based on both advanced contact algorithms (see e.g.: Gay Neto and Wriggers 

[6],[7], and Gay Neto, Pimenta and Wriggers [8]–[10]) and kinematics formulations (see Pimenta, Campello, and 

Wriggers [11], [12],  and Campello, Pimenta, and Wriggers [13]). 

The aim of this work is to propose a framework to couple both codes (PSY and GIRAFFE) in an efficient, 

run-time, memory-sharing way, leading to a unified project called GIPSY. This framework will be a powerful tool 

for the simulation of problems wherein particle materials interact with thin flexible structures, such as (but not 

restricted to) particle deposition processes for surface engineering applications, the transport of grains in flexible 

conveyor belts in the mining industry, particle bombardment systems on membrane and cell structures, 3D 

manufacturing of flexible electronics, and many others. Throughout the text, italic letters ( , ,..., , ,..., , ,...)a b A B  

denote scalar quantities, boldface italic letters ,( ,..., , ,...)a b  denote vectors and boldface italic capital letters 

( , , ...)A B  denote second-order tensors in a three dimensional Euclidian space. 

2  Summary of the DEM model 

The main idea behind the DEM for describing the mechanical behavior of a group of solid entities is by 

understanding and mapping the individual motion of each one of these entities. In this paper’s context, the solid 

entities (or discrete elements) will be called “particles”. It is assumed that the particles interact with each other and 

with its surroundings by means of forces, which can be a combination of contact forces (with both normal and 

friction components) and non-contact forces (e.g., drag, gravity, electromagnetic repulsion/attraction, etc.). The 

contact forces are due to collisions and touching with other particles, obstacles, rigids walls and occasionally 

deformable structures (such as beams and shells). With the aim to estabilish a general framework, we will 

considerer here only spherical particles. The model herein summarized is described in depth in Campello [2]–[4] 

and Campello and Cassares [5]. 

Let us consider a system of PN particles each with mass im , radius ir  and rotation inertia 22 5( )i i ij m r , 

with 1, , Pi N . The position of a particle will be denoted by vector ix , the velocity by vector iv   and the spin 

by vector iw , as shown in Figure 1. Motion description of a particle. PointP belongs to the particle’s surface.. 

The rotation vector relative to the beginning of the motion is denoted by i , whereas the incremental rotation 

vector is denoted by i . Contrary from the usual, we take this vector as being the Rodrigues rotation vector 

instead of the classical Euler rotation vector. For a detailed account of the rotation description we refer the reader 

to Campello [4].  

 

 

Figure 1. Motion description of a particle. PointP belongs to the particle’s surface. 

From the Euler’s laws, the following equations must hold for each particle at every time instant t , 
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Here, we denote tot
if  as the total force vector acting on the particle and tot

im  as the total moment vector with 

respect the particle’s center. The superposed dots shown above denote time differentiation. The total force tot
if  is 

the sum of the following force contributions, 

 
drag con,p fric,p con,strtot nf ,i i ii i i imf g+ f f f f f  (2) 

where g  is the gravity acceleration vector, 
drag
if is the drag force vector, nf

if are the forces due the near-field 

interactions with others particles, 
con,p
if  are the normal forces due to contacts stemming from collisions with other 

particles as well as obstacles and rigid walls (herein given through Hertz contact theory), 
fric,p
if  are the tangential 

forces due to friction caused by these collisions (herein given through a consistent stick-slip scheme), and con,str
if  

the forces due to contacts with deformable structures (which include both normal and frictional contributions, 

coming from solution of the particle-structure contact problem as described in section 4). In the same way, the 

total moment applied on the particle will be given by the sum of the following contributions, 

 
fric,p con,strtot

i i im m m , (3) 

where 
fric,p
im  is the moment generated by the friction forces from other particles (and obstacles and rigid walls) 

and con,str
im  is the moment generated by the friction forces from the neighboring structures. Numerical time 

integration of equation (1) provides the particles’ motion. This is done here by the integration algorithm proposed 

in Campello [3], which has both implicit and explicit versions. In this work, we adopted the explicit version only, 

since the inter-particle contacts inherently require a very small time-step, thus rendering the implicit version 

unnecessary. For the sake of conciseness, the integration algorithm will be omitted here.  

3  Summary of the FEM model 

The structures´ deformation (we are mainly interested in beams and shells here, the latter of which 

membranes are a special case) are here described by the advanced kinematics models (accounting for large 

deformations and finite rotations) of Campello, Pimenta and Wriggers [14], Pimenta, Campello, and Wriggers 

[11]-[12], Gay Neto [15] (in which the geometrically-exact rod model is employed for dynamics of slender long 

offshore risers, with contact with the seabed), and Ota et al. [16] (in which the geometrically-exact shell model is 

employed for dynamics, using the Newmark’s (implicit) integration scheme and the principle of virtual work). 

Beams are treated as isoparametric elements with 2 or 3 nodes each, and shells with the triangular element so-

called T6-3i (incompatible, quadratic in displacements and linear in rotations, see Campello, Pimenta, and 

Wriggers [14],  and Campello [17]). The time integration is done by the implicit Newmark method (with possibility 

to consider structural damping, in this case, of Rayleigh type, as presented for this context by Ota et al. [16]).  

4  Particle-structure and structure-structure contact 

For particle-structure contact, the contact formulation basis adopted here is that of Gay Neto, Pimenta, and 

Wriggers. Accordingly, for particle-beam interactions, we follow a simple strategy in which the beams are assumed 

to be of circular cross section, and treated as a set of spheres (of same radius of the beam´s cross section) whose 

centers lie on the beam’s axis. This approximation to the beam’s geometry is adopted only for the sake of contact 

detection, and not for the beam´s kinematics. The advantage of this approach is the simplicity of the contact 

detection scheme (which amounts to a sphere-sphere contact), thereby sparing the solution to a minimum distance 

problem, which could be untenable for large multi-particle systems. It has been successfully used by the authors 

as it can be seen in Gay Neto and Campello [19]. GIRAFFE also may handle more complex contact models 

between beams (see, e.g., Gay Neto and Wriggers [7] and Gay Neto, Pimenta and Wriggers [8]–[10]). 

For particle-shell interactions, in turn, the contact model here adopted is that of Neto, Pimenta, and Wriggers 

[8]. This amounts to contact between two surfaces, the first one being given by a spherical shape SΓ , with radius 

r  (herein representing the boundary of a spherical particle of the DEM model), and the second one being a general 

surface Γ , representing the surface of the shell. The model is an enhanced master-slave contact, considering as 

the slave point the spherical surface SΓ  of the particle (with its rigid body movement attached to the movement of 

the particle´s center) and as the master the Γ  surface of the shell. Accordingly, in order to describe the 
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configuration evolution of the slave surface, six degrees of freedom (DOFs) are required, so, for a time interval 

between any two successive configurations, “ i ” and “ 1i ”, the 6-dimensional vector Sd  is used to handle the 

slave surface’s DOFs. 

The master surface is parameterized using a vector T[ ]c = , which contains the convective coordinates 

and  of points of the surface that are candidate to establish contact with SΓ . In the general form, the master 

surface is dependent on an N-dimensional vector Md , containing N values of generalized coordinates, 

representing the DOFs related to the Γ  surface’s motion in space, such that we may write Γ Γ( , )Mc d . The 

contact problem can be seen as the search for a point of convective coordinates T[ ]c =  which has the 

minimum distance to the particle’s center Cx , with fixed set of DOFs. We assume that Γ  is smooth, such that its 

tangent directions are given by Γ,  , and Γ, . The minimum distance problem between the two bodies can be 

defined through the following orthogonality relation, 

 
Γ Γ

Γ Γ

,

,

( ) 0

( ) 0
C

C

x
r =

x
, (4) 

which is solved here through a Newton-Raphson scheme, furnishing the coordinates c . To test for possible 

penetration, we resort to the gap function ng  given by, 

 ( )n C rg x n , (5) 

providing a scalar quantity ( )n Cg rx n  which is then used as the contact detector. If contact occurs, 

the corresponding force contribution must be included into the weak form of the shell, as well as into the total 

force vector of the particle. To enforce the non-penetration condition, and thus account for the normal contribution 

in the weak form, we resort to the penalty method and define the following contact potential 

 
1

2
n n n nW g g , (6) 

where n  is the normal penalty parameter (“normal contact stiffness”). This leads to the following contribution 

into the shell weak form,  

 n n n nW g g . (7) 

where Γ( )n C n rg x n .  

For beam-beam interactions, in turn, we follow the simple strategy proposed in Gay Neto, Pimenta, and 

Wriggers [18]. 

5  Coupled DEM-FEM solution scheme 

The models summarized previously are implement in our in-house codes PSY [20] (for DEM analysis of 

particle systems), written in Fortran language, and GIRAFFE [21] (for FEM and contact analyses of structures), 

written in C++. Here, the FEM solution loop is taken as the “host” loop (although the DEM loop could likewise 

be taken), and thereby GIRAFFE is taken as the “host code”, being responsible for handling all the input data, 

such as all environment conditions, forces, boundary conditions, material properties and solution parameters (i.e., 

time step size, converge tolerance, etc.). To couple the codes in an efficient manner, we made use of the C/C++ 

and Fortran interoperability, enabling full (on-time, memory-sharing) communication between the codes. In the 

end, a unified project called GIPSY was attained. 

An earlier version of this code coupling was implemented previously through the use of input and output text 

files. In such scheme, at every time step of the solution GIRAFFE writes a results file (containing the current 

positions, velocities, angles and spins of the beams and shells, as well as their occasional contact forces with the 

particles) and calls PSY, which then reads it as an input file. PSY then computes the new positions, velocities, 

angles and spins of the particles and passes all these data back to GIRAFFE through another results file, which is 

then read by GIRAFFE, refeeding the solution. Thereafter, the particles are kept frozen in space until the 

convergence of the current time step is achieved. This process is repeated for each time step. In the new coupling 

scheme proposed here, which makes extensive use of the interoperability between the code languages, we no 

longer need text files and thus were able to come up with an incredibly more efficient coupling between the codes. 
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At the algorithmic level, the main idea behind the coupling is to have a staggered scheme:  at every time 

step, the FEM solver treats the particles as fixed geometric entities in space, with positions, angles, velocities and 

spins given from the previous converged time step computed by PSY. It then computes the new state of the beams 

and shells and passes them back to the DEM solver (including the occasional contact forces between particles and 

beams as well as particles and shells), which in turn treats the beams and shells as fixed in space and computes the 

motion of the particles, within the time step. Whenever the particles make contact with the structures, GIRAFFE 

computes the corresponding reaction forces and moments and passes them to PSY (with opposite sign) through 

the vectors con,str
if and con,str

im  of equations (2) and (3), respectively, leading to new displacements, rotations, 

velocities and spins experienced by the particles. Such procedure is detailed in Gay Neto, and Campello [19]. 

6  Numerical examples 

In this section, we will provide two numerical simulations to validate and illustrate the applicability of our 

new coupling scheme. For time integration, the same time step was adopted on both DEM and FEM solutions. In 

all examples, the convergence tolerance within the Newton iterations was 810Tol , for both unbalanced forces 

and moments (and incremental displacements and rotations) in the FEM solver. No tolerance was needed on the 

DEM solver since the explicit version of the method is being used.  

6.1 Single particle interacting with a flexible rod 

To validate the new scheme, as a benchmark problem we adopted the single particle  interaction with a 

flexible rod, as provided by Gay Neto, and Campello [19].  Fig. 2 shows some snapshots of the simulation. The 

particle has a radius of 0.01Pr m, mass density 1300P kg/m³, Young’s modulus of 10PE  GPa and 

Poisson’s coefficient of 0.45P . The rod, in turn, has a cross-sectional radius of rod 2.5r cm, length 5L
cm, mass density rod 8000  kg/m³ and elastic properties rod 210E GPa and 0.3P . The particle has an 

initial velocity of (0) ( 60,0,0)v [m/s], and the rod has its displacements and rotations fixed at the base.  

 
time 0.00 s 

 
time 0.00015 s 

 
time 0.0003 s 

 
time 0.0006 s 

 
time 0.0008 s 

Figure 2. Snapshots of the motion at some selected time instants. 

A time step size of 62 10t s is adopted, being the final time 0.01ft s. The penalty parameter for 

rod-particle contact is 71.41 10n N/m. The rod is discretized with 10 3-node finite elements. 

 
(a) Particle’s displacements 

 
(b) Particle’s velocities 

Figure 3. Validation results. 

As it can be seen from Fig. 3, the results from the present and earlier coupling schemes are exactly the same. 
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Worth mentioning that, in the previous (i.e., coupling by file) implementation, this example takes 98.23 s to 

complete in a standard, single-core laptop computer, whereas in the new approach it takes only 39.40 s, an increase 

of about 250 % on the program’s performance. This increase will be much higher for large particle systems. 

6.2 Particles moving through a flexible shell  

In this model problem, we analyze the motion of grains over a thin-walled surface, the cross-section of which 

is shown in Fig. 4. This example explores the contact between particles with a flexible structure, modeled using 

shell finites elements. The resulting surface was composed of 3000 triangular elements, with 6 nodes each, leading 

to a problem with 6161 nodes. The thickness of the surface is 1 mm, and its material is aluminum, with an elastic 

modulus of 70GPa, Poisson ratio of 0.3, and mass density of 2700 kg/m³. The nodes from one of surface’s tips 

have both translations and rotations constrained, while all others are free as in a cantilever. The struct geometry 

was based on the example shown on Gay Neto, Pimenta, and Wriggers [8]. 

 

 

Figure 4. Surface’s cross-section.  

Initially, the particles are placed into a rigid container. A total of 2080 particles with a 1 mm radius are 

present, with 1PE MPa, 0.3P and 2000P  each. Gravity acts downwards with a magnitude of 

9.81g m/s. The penalty parameter used for the surface-particle contacts was 22.9 108n N/m, and the 

time step was 41 10t s.  The Fig. 5 shows some snapshots of the simulation. 

 

 
time 0.00 s 

 
time 0.06 s 

 
time 0.1 s 

 
time 0.150 s 

Figure 5. Snapshots of the motion at some selected time instants of the 2nd example. 

7  Conclusions 

The main purpose of this work was to present an efficient coupling framework for problems wherein particles 

may interact with flexible surfaces. As it has been shown from the first numerical example, the new scheme based 
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on the interoperability between C++ and Fortran languages proved to give us the very same results as from the 

earlier coupling scheme, while attaining a very significant boost in performance. The contact method proved to 

handle properly the motion of both discrete and continuum materials, allowing multiple contact between each 

other. More elaborate examples are under work by the authors. 
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