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Abstract. Stress and strain quantities and related characteristic subdomains of a common monotonic stress-strain 

diagram are studied. “Component quantities” are explicitly defined, encompassing many components which, 

although found throughout the literature —e, p, –Y, –Y—, are not usually comprehensively explored together 

from one single source. Those quantities are used to form planes (component, component) defining characteristic 

subdomains, which contain an exclusive type of curve to be linearized. An environment is thus constructed, 

offering a broad context of subdomains where linearized relations can be worked out. As a specific application, 

using such components and a logarithmic linearization it is possible to unify the unidimensional monotonic 

solicitation in tension/compression from one single source of equations, comprising classical formulations —

Ramberg-Osgood, Hollomon, Swift, Ludwik— and other ones not widely knwon nor used. Numerically (or 

algebraically), there are two independent sets of elastic plus plastic equations relating the quantities , ep=–Y, 

, ep=–Y, p=–e=–(/E), plus accumulated quantities acc and acc from a previous plastic deformation. 

Diverse formulations —e.g. logarithmic and/or polynomial ones— can be specified for each subdomain or model. 

Such final models will comprise series of computer implementable, adjoined numerical expressions. Notice that 

with this comprehensive context of variables and equations some small inconsistencies in the basic formulation of 

unidimensional plasticity are revealed, which are qualitatively important for the due description of the 

phenomenon of plasticity, specially when developping into a more complex equationing. 

Keywords: computational mechanics, stress-strain relations, basic phenomenology. 

1  Introduction 

The tension/compression stress-strain diagram is of fundamental importance as a starting point for a 

phenomenological macroscopic characterization of mechanical properties. Quantification of the exclusively non-

linear curve is usually sought through the simplest means for linearization, aiming simple but accurate basic 

formulations for describing the relation . Such formulations and the diagram typical quantities —e.g. E, Y, 

FAILURE— make up a phenomenological description of the most basic mechanical behavior of a given material. 

 

Standards for tests resulting the stress-strain curve are found in NBR6152 (ABNT (1992)) or in A370 

(ASTM (1993)). For many types of the nonlinearities to be found, Ramberg and Osgood (1943) gave the 

foundation for a relatively simple, accurate formulation for their description. Their formulation has been retaken 

by Lemaitre and Chaboche (1985). Lopes and Al-Qureshi (1990) describe the formulations of Swift and 

Hollomon and show diagrams analogous to some of those used here. Kleemola and Nieminen (1974) compare 

the formulations of Hollomon, Swift, Ludwik, of close interest here, and also that of Voce. Adams and 

Beese (1974) divide a simple tensile stress-strain curve into three parts, elastic, non-linear plastic and linear 

plastic, and suggest a formulation for the non-linear plastic part analogous to one of those developed in this text. 
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Dieter (1988) discusses the basic points of stress-strain diagrams and some widespread formulations. An account 

of the details present in the test results and usually neglected in descriptions, specially for unloading-reloading, is 

given by Dieter (1981). Wulff and alii (1965) present mechanical properties as to their relation to the stress-

strain diagram. Helman and Cetlin (1983) is a brief introduction to the stress-strain diagrams and relations used 

in metal forming. A brief overview of the relations among the phenomenological measured mechanical 

properties and the material structure can be found in Hertzberg (1983). The systematic study of the  diagram 

had its climax a long time ago, as shown by the date of those references. Nevertheless, some fundamental points 

of concern have never been dully accounted, what is an important basic lack when developing more evolved 

formulations. Remark that the separate formulations referred to above have never been worked into a broader 

general description for the diagram, with consistent reference of quantities among formulations (as performed 

now), resulting in the predominance of those specialized autonomous formulations —e.g. Ramberg-Osgood, 

power curve, Swift—. 

2  Component quantities and the linearization of the relation P() 

Assuming the independence of elastic and plastic phenomena: 

 

 

where: e = e(), ;  p = 0,    E|P,  p = p(),    E|P. 

2.1 Decomposition of the total quantities  and  

In order to retain just an exclusively non-linear behavior curve in the plastic domain, let’s adopt the following 

procedure: from the total quantities,  and , it will be taken away either a variable quantity, the (linear) elastic 

component quantity e, or some fixed quantities, the parameters E|P and E|P. Then there will be left either a 

nonlinear, plastic component quantity, p, or nonlinear, elastoplastic component quantities, ep and ep, as shown 

in the sequence. First, working with the deformation component quantities, let’s define: 
 

E|P = e(=E|P) = E|P / E; then: 
 

 (1) 

 (2) 
 

In a similar way, the following stress component quantity can be defined: 
 

 ep =  – E|P,   E|P .        (3) 
 

E|P is the maximum deformation attained in the elastic domain; it is directly related to E|P (defined previously, 

item 2). ep is an elastoplastic component of deformation, obtained taking away the elastic limit deformation E|P 

from the total deformation  in the range E|P. An elastoplastic component of stress ep has been obtained in an 

analogous algebraic way to ep, thus the same index notation and nomenclature. e and p are exactly the commonly 

used elastic and plastic deformations. 

2.2 Logarithmic linearization 

Experimental data worked out into planes ( ln(–taken), ln(–taken) ) will be described by the relation:: 

          (4) 

where taken is one of the component quantities e or E|P and taken is E|P, quantities “taken away” as in (1) to (3) 

 

The equation above can be rearranged to obtain the general forms of the plastic relation p() and of its “inverse” 

(p): 

  

 

where:    reduc =  – taken , taken = E|P    and    reduc =  – taken , taken = e or E|P ;      E|P ,   E|P. 

ln(–taken) = ln K + (1/M) ln(–taken),  > taken,   > taken 

reduc = (reduc / K)
M

, reduc = K  reduc

M1/
 

 

p =  – e =  – ( / E),  ,  ; 

ep =  – E|P,    E|P. 

 = e + p 
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2.3 Reintroducing total quantities 

The previously defined quantities can be enhanced into a so-called set of “constitutive” quantities, which other 

than the “reduced” components (item 3.2) will also include the total stress and total strain. Altogether those 

constitutive quantities are: , ep, , ep and p. These constitutive quantities will be used to form planes (c, c), 

where either c or c at least must be a “reduced” component, in order to get an exclusively non-linear curve. The 

exclusively non-linear curves in those planes are then linearized, using the most suitable means (logarithmic 

linearization, polynomials, etc.). Stress-strain diagrams with such constitutive quantities are shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1:  Elastic-elastoplastic behavior: curve : e+p; curve : p (translated to E|P in (a)). Char- 

 acteristic subdomains: a) (, ) and (ep, ep), b) (ep, p), c) (ep, ), d) (, ep) and (, p). 

3  Stress/strain plastic behavior models 

Model 1 (Strain Model) gives the total axial uniform deformation  and its elastic and plastic components e and 

p to be found in an elastic-elastoplastic solid with isotropic hardening, initially isotropic, under a given 

unidimensional monotonic uniform tensile/compressive loading : 
 

for  |  E|P ,    = e = ( || / E ) Sgl () , p = 0 ;           (5)(a) 

for  |  E|P ,     = e + p = 
P

K

M

1







 Sgl () + A1  Sgl () .  (5)(b) 

Separately, the elastic and plastic components in eqn. (5)(b) are given by: 

e = ( || / E ) Sgl (),   p =  
P

K

M

1







 Sgl () + A1  Sgl () –  (|| / E) Sgl () .                 (5)(c) 

Furthermore:  for  ||  E|P ,  = s ,  

that is,  is the plastic limit s itself for  ||  E|P ( and s are readily explicitly given in Model 2). 

 

Model 2 (Stress Model) analougously:  
 

for ||  E|P ,   = (E ||)  Sgl() ;                   (6)(a) 

for ||  E|P ,   = K (P2)1/M  Sgl() + A2  Sgl().                     (6)(b) 

 

Furthermore: for  ||  E|P ,   = s ,                    (6)(c) 

 

that is,  is the plastic limit s itself for  ||  E|P. (s is not defined for  ||  E|P) 

Remarks: InTable 1, (E|P, E|P)  (Y, Y), where Y is the common notation for the onset of plastic 

deformation (i.e., the “yield limit”); E|P and E|P are always taken as positive (same value for tension and 

compression). Notes: †: in order to form planes (ln(c), ln(c)); *: exactly the same equations, just changing 

nomenclature; **: with  for p (p=–/E), see item 5.2. 
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Table 1: Algebraic expressions for Pi and Ai  in eqns. (5)(b) and (6)(b). 

4  Formula compactation 

First of all, as a point of reference, eqns. (5)(a) and (5)(b) using the quantities of set (ii) are exactly a Ramberg-

Osgood equation (as given in Lemaitre and Chaboche (1985)). Adjusting nomenclatures: K = Ky, M = My , E|P 

= y, and rewriting, it’s obtained: 

 

 = e + p ,   ,         11           (7) 

where:    e =  / E ,    p =  
 

E P

M

K
 Sgl (),   and   f(x) =      0,        f(x)0 

                         f(x),      f(x)>0 . 

 

Equation (7) is what could be called a “monolithic-compound” (or false monolithic) formulation, in 

opposition to equations (5)(a) to (6)(b) which make up formulations split into cases.  For such monolithic 

formulation, models 1 and 2  have to be rewritten as a “single” formula, in a similar way to eq. (7) (but 

not exactly alike): 
 

Compact writing of eqns. (5)(a), (5)(b), (6)(a), (6)(b) from models 1 and 2 as a single formula, analogous to eq. 

(7): 
 

 = elast  +  elastopl ,             12   (8) 
 

where: elast =   e ||  


E|P

  Sgl () , 

  elastopl =  


E|P

 k pm Sgl () + a Sgl ()  , 

  a, e, k, m, p, ,  are given in Figure 3, 

  

 f(x)
xA

=     f(x),   f(x)xA          and  
xA
f(x) =    0,       f(x)xA  

         0,       f(x)>xA          f(x),   f(x)>xA . 

 
 Equation (8) can be inserted in a fluxogram for the stress-strain diagram characterization and simulation, as 

exemplified in Fig. 3. Figure 3 describes the use of eq. (8). Some points in this figure are of interest to notice.  

 

 

 

 

 

 

ALGEBRAIC EXPRESSIONS FOR  Pi  AND  Ai  IN THE  STRAIN  AND  STRESS  BEHAVIOR  MODELS  

set 

#   
c, c 

QUANTITIES 

STRAIN  MODEL 

=(), eqn. (5)(b) 

STRESS  MODEL 

=(), eqn. (6)(b) 

some similar formulations  

(developed basically as 

 USED† P1 

(||-|taken|) 

A1 

(|taken|) 

P2 

(||–|taken|) 

A2 

(|taken|) 

a relation of the type:) 

i –E|P, –E|P || – E|P E|P || – E|P E|P  

ii –E|P, –/E || – E|P || / E || – ||/E E|P Ramberg-Osgood* (=()); 

Ludwick* (=()) 

iii , –E|P || E|P || – E|P 0  

iv , –/E || || / E || – ||/E 0 Hollomon or simple power 

curve** (=()) 

v –E|P,  || – E|P 0 || E|P  
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Fig. 3: Schematic activities for parameter characterization and behavior modelization of a simple  

 monotonic stress-strain curve using component quantities and the compact notation of eq. (8). 

 

 

 

 

 

 

 

 

 

 

 

   II 

=given 

=? =given 

=? 

linear regression 

 

1. testing 

or 

|| 

|| 

E|P 

E|P 

E 

2. preliminary  

    identification 

4. obtention of regression parameters 

 = elast + elastopl   
 

elast =   e || 
E|P

  Sgl() †† 

 

elastopl  =  
E|P

< k pm Sgl() + a Sgl () > 

  ;   
 

 E e; K k; 1/M m 
 

c+c † p 

+c–E|P ||+c–E|P 

+c–/E ||+c–(||/E)  

+c   ‡ ||+c 

 

c   † a 

   ‡ 0 

–E|P E|P 

 

;   
 

1/E e ††; 1/KM k; 

Mm 
 

c † p 

–E|P ||–E|P 

   ‡ || 
 

c+c  † a 

+c–/E ||/E 

+c–E|P E|P 

+c   ‡ 0 

 

B) =() II Behavior Modelization A) =() 

where, for >
E|P

: 

e = e || Sgl() 

p = k pm Sgl() + a Sgl() – (||/E )) Sgl() 

, ee, pp 

where, for >
E|P

: 

=s 

 

, ss 

ln(c) ln(c+c0) 

  

  

  

 

3. choice of  components 

    & preparation of data 

lin. regress.; r0
2 

1st ci 

lin. regress.; ri
2 

 

K, M, c=0 

c0=0 c00 

ln(c+ci+1) 
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ri
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5  Conclusion 

 The essence of this work is the systematic gathering and study of stress-strain diagram variables and their 

components inside an environment of worked out composed, component quantities and related characteristic 

subdomains. The resulting models are made of juxtaposed or adjoined expressions, in the form of algebraic or 

numeric, independent equations. The key point is the environment, which is itself quite simple and straightforward, 

defined in a couple of lines (relations (1) to (3)). Almost all the formulas that follow are the application of this 

environment to use logarithmic linearizations. Those formulas show that the environment is able of consistently 

setting forth the classical logarithmic formulations, and further ones not so famous nor tried out, all of that from a 

single source (models 1 and 2 as schematized in Fig. 3). Notice also that the planes so defined form a sequence of 

finite domains. In a very specific sense, those finite domains are a means of “discretization” of the problem domain, 

into its distinctive type of curves (from two curves in Fig. 1 to five in Fig. 4), analogous to using a plate element 

linked to truss elements. Nevertheless, such analogy applies only in a general sense. Remark that the formulation 

of each plane (“domain”) can also be regarded as “inclusive”, that is, it includes the previous domain, or better 

saying its domain, not in formlution  In another view, notice that the characteristic subdomains so defined form a 

sequence of inter-imbeded subdomains, which are a means for the “discretization” of the problem domain into its 

distinct types of curves, from two curves in Fig. 1 to five curves in Fig. 4. The formulation of each domain in this 

case is independent but starts at the final point of the previous formulation, which is the link between them. 

 As an application, the logarithm linearization-based equationing developed explores comprehensively the 

use of the component quantities. In this way, variables and relations of common use (power curve, Hamberg-

Osgood) are unified and expanded into a broader context. It is specifically used one algebraic relation, eqn. (4), a 

logarithmic linearization. The general form of eqn. (4), the component quantities defined in eqns. (1), (2) and (3), 

and Hooke’s law give forth eqns. (5)(a) to (6)(c). The latter equations by their turn comprise in fact five sets of 

elastic plus plastic stress-strain relations, using the parameters in Table 1.  

 The environment itself has been accomplished starting with the use of the parameter E|P to define a new 

variable, ep, in terms of  and E|P (ep=–E|P). The next step is the identification and definition of the 

deformation variable ep, similar to ep. The elastoplastic components ep and ep together are to be identified and 

visualized as a subdomain in the stress-strain diagram comprising solely the nonlinear portion of the stress-strain 

curve. All sets of constitutive quantities basically follow this scheme: they form planes where just an exclusively 

type of curve appears, in this case exclusively non-linear curves. Since it is not possible to write down an equation 

which is at th same time linear and non-linear (which is the problem in stabllishing one single equation for stress-

strain diagrams), those planes are a better approach, since for each separate domain more accurate formulations 

can be developed. 

  
 A matter of concern in using some of the formulations from the bibliography is the use of curve (3) of Fig. 2 

as accounting for a previous plastic deformation, what is a conceptual mistake but in the very specific case of a 

material without an elastic domain. This conceptual mmistake may have unforseen effects when using this basic 

equationing as part of a more comprehensive formulation.  

 Those expedients are not new taken separately. They can be found one of a type at each one of several places 

in the literature. Also the nomenclature and symbology are for the most borrowings from here and there. 

Nevertheless, the use of these expedients all at once, that is, the explicit reference and use of separate variables for 

the component quantities systematically and the comprehensive identification of the roles of those variables and 

of their respective subdomains, that is not easily found in the literature. 
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Fig. 2: Previous Plastic Deformation or Reloading. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4:  curve split into a series of pre-defined characteristic subdomains: (a.1) with a  

 drop in stress; (a.2) |Y approximated as the first value just before the yielding pla- 

  teau (and not the greater value, ABNT (1990)); (b) no drop in stress, exclusively 

 non-linear hardening; (c) univoque relation  = (); (d) an illustrative possibility of  

  diversity in subdomain modeling, in this case the passage from elasticity to strain- 

 hardening plasticity as a negative slope straight line. 
 

 


