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Abstract. There are problems in classical linear elasticity whose closed form solutions, while satisfying the
governing equations of equilibrium and well-posed boundary conditions, predict material overlapping, which is
not physically realistic. One possible way to prevent this anomalous behavior is to consider the minimization of the
total potential energy of classical linear elasticity subjected to the local injectivity constraint. In two dimensions,
the corresponding constrained minimization problem has a solution, which may not be unique. To investigate this
class of problems, we consider the equilibrium problem of a cylindrically anisotropic disk subjected to a prescribed
displacement along its boundary. We search numerically for either radially or rotationally symmetric solutions
defined in a one-dimensional domain. Our discretization strategy uses linear finite elements and yields convergent
sequences of solutions at a very low computational cost when compared to results reported in the literature. It
is clear from our investigation that a small perturbation must be introduced to obtain the rotationally symmetric
solution, for otherwise the solution obtained is radially symmetric. The total potential energy from the rotationally
symmetric solution is lower than the corresponding energy evaluated from the radially symmetric solution.
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1 Introduction

There are problems in classical linear elasticity whose closed form solutions, while satisfying the governing
equations of equilibrium and well-posed boundary conditions, predict material overlapping, which, of course, is
not physically realistic. Mathematically, material overlapping is characterized by the loss of injectivity of the de-
formation field. Locally, it means that the determinant of the deformation gradient is not positive. This anomalous
behavior is usually associated with singular stresses and strains, which contradict the basic assumption of linear
elasticity that the displacement gradient is infinitesimal.

The anomalous behavior may appear at interior points of linearly elastic anisotropic disks in equilibrium in
the absence of body force and under external pressure. The associated problems are simple enough to yield closed
form solutions against which numerical solutions can be compared and validated and, at the same time, be used
to better understand the role of injectivity in elasticity. Closed form solutions were obtained by Lekhnitskii [1]
and later discussed by Fosdick and Royer-Carfagni [2] in the context of classical linear elasticity. These solutions
predict not only material overlapping, but also stress singularities for materials with elastic modulus in the radial
direction being greater than the elastic modulus in the tangential direction. Christensen [3] has argued that material
properties of this type are found in carbon fibers with radial microstructure.

To prevent the anomalous behavior in plane problems of elasticity, Fosdick and Royer-Carfagni [2] propose to
minimize the classical energy functional of linear elasticity subject to a local injectivity constraint, which consists
of imposing that the determinant of the deformation gradient be no less than a small positive parameter. They
show that under suitable, but otherwise sufficiently general boundary conditions, a solution exists. Our aim is to
investigate the existence of non unique solutions for this class of minimization problems. In view of its simple
theoretical structure, we consider the class of disk problems mentioned above in the context of the constrained
minimization theory of Fosdick and Royer-Carfagni [2]. In this context, these authors have found a closed form
solution that is radially symmetric with respect to the center of the disk, is different from the radially symmetric
solution of classical linear elasticity, and satisfies the injectivity constraint.

In general, however, the associated constrained minimization problems are highly nonlinear and require a
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numerical solution. Aguiar [4] proposes a numerical approach based on an interior penalty formulation, which is
simple and precludes the necessity of knowing the active region in advance. The approach consists of searching
for minimizers of a penalized energy functional Eδ = E + P/δ, where E is the total potential energy of linear
elasticity, δ is an arbitrary positive number, and P is a non-negative functional defined on a constraint set Aε,
which is the set of all admissible deformations that satisfy the local injectivity constraint. A minimizing sequence
of solutions parameterized by δ is then constructed, which tends to the solution of the constrained minimization
problem as δ tends to∞. Even though the associated minimization problem is still a constrained problem, because
minimizers are searched in the constraint set Aε, from a computational point of view, this problem can be treated
as an unconstrained minimization problem and solved by standard nonlinear programming techniques.

Using both the penalty formulation proposed by Aguiar [4] and a very fine mesh of isoparametric biquadratic
finite elements, Fosdick et al. [5] have found that a secondary solution is possible for low enough shear modulus.
This solution seems to be rotationally symmetric with respect to the center of the disk and bifurcates from the
radially symmetric solution found previously by Fosdick and Royer-Carfagni [2]. The geometry-related error
induced by the boundary approximation acts as a perturbation in the search of a stable equilibrium solution.

In this work we also use the penalty formulation of Aguiar [4] and assume that solutions of the constrained
minimization problem are either radially or rotationally symmetric, which allow us to consider linear finite ele-
ments defined in a one-dimensional domain, rather than in the two-dimensional domain considered by Fosdick
et al. [5]. Thus, there is no boundary approximation and, therefore, we only obtain the radially symmetric solution
in the absence of perturbations. To obtain the secondary solution, we add a perturbation to the initial candidate
for a minimizer in the minimization procedure. Our approach yields convergent sequences of numerical solutions
at a very low computational cost. The numerical solutions converge to a limit function that is different from the
numerical solution reported in Fosdick et al. [5]. In addition, it sheds light on the behavior of the secondary solu-
tion that is not reported in this previous work. Our numerical results show that the tangential displacement field is
linear near the center of the disk and that the total potential energy from this secondary solution is lower than the
corresponding energy evaluated from the radially symmetric solution.

In Section 2 we apply the numerical procedure proposed by Aguiar [4], which is based on an interior penalty
formulation together with a finite element scheme, to the class of constrained minimization problems considered by
Fosdick and Royer-Carfagni [2] with the goal of determining an approximate minimizer for this class of problems.
In Section 3 we consider the equilibrium problem of a cylindrically anisotropic disk subjected to a prescribed
displacement along its boundary and obtain the energy functional E and the penalty functional P . In Section 4
we show graphs of convergent sequences of numerical results concerning a secondary solution of the associated
constrained minimization problem. In Section 5 we present some concluding remarks.

2 Numerical procedure

Let B ⊂ R2 be the undistorted natural reference configuration of the body. Points X ∈ B are mapped to
points x ≡ f(X) = X + u(X), x ∈ R2, where u(X) is the displacement of X. The boundary ∂B of B is
composed of two non-intersecting parts, ∂1B and ∂2B, ∂B = ∂1B∪∂2B, ∂1B∩∂2B = ∅, such that u(X) = ū(X)
for X ∈ ∂1B, where ū is a given function, and a dead load traction field t̄(X) is prescribed for X ∈ ∂2B. In
addition, a body force b(X) per unit of volume acts on X ∈ B.

We consider the problem of minimization of the total potential energy of classical linear elasticity, given by

min
v∈Aε

E [v], E [v] =
1

2

∫
B
C[E] ·E dX−

∫
B

b · v dX−
∫
∂2B

t̄ · v dX , (1)

where E = (∇v +∇vT )/2 is the infinitesimal strain tensor field and

Aε ≡
{
v :W1,2(B)→ R2|det(1 +∇v) ≥ ε > 0, v(X) = ū(X) for X ∈ ∂1B

}
(2)

is the set of admissible displacement fields, with ε being a sufficiently small positive scalar. Furthermore, C is the
elasticity tensor, which is symmetric and positive definite. If the injectivity constraint det(1 +∇v) ≥ ε > 0 were
not present, the constrained minimization problem stated above would become the classical minimization problem
of linear elasticity theory.

Let u ∈ Aε be the minimizer of E [·] and B be divided in two open subregions B> and B=, such that
B = B> ∪ B= ∪ Σ and B> ∩ B= = ∅, where Σ is the interface between B> and B=. The subregions B> and B=

are defined as

B> ≡ int[{X ∈ B | det∇f(X) > ε}], B= ≡ int[{X ∈ B | det∇f(X) = ε}], (3)
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where int[·] denotes the interior of a set. Fosdick and Royer-Carfagni [2] show that the Euler-Lagrange equations
for the constrained minimization problem defined by Eq. (1) together with Eq. (2) are given by

Div T + b = 0 in B> , Div (T− ελ(∇f)−T ) + b = 0 in B= , (4)

where λ(X) ≥ 0 is the Lagrange multiplier field associated with the injectivity constraint det(1 +∇u) ≥ ε > 0
and T = C[E] is the stress tensor. The boundary conditions are given by

T n = t̄ in ∂2B> , (T− ελ(∇f)−T ) n = t̄ in ∂2B= , (5)

where n is a unit normal to ∂2B. In addition, the jump condition

(T− ελ(∇f)−T )|Σ∩B̄=
n = T|Σ∩B̄>

n (6)

must hold across Σ ≡ B̄> ∩ B̄=, where n is a unit normal to Σ and where Σ ∩ B̄= and Σ ∩ B̄> mean that the
evaluations are understood as limits to the dividing interface Σ from within B= and B>, respectively.

In the interior penalty method, we replace the the energy functional of Eq. (1b) by a penalized potential
energy functional Eδ : Aε → R defined by

Eδ[u] ≡ E [u] +
1

δ
P[u], (7)

where δ > 0 is a penalty parameter and P[u] : Aε → R is a barrier functional, which must satisfy P[u] > 0, ∀u ∈
Aε, and P[u]→∞ as u approaches the boundary ofAε. The addition of the term P/δ establishes a barrier on the
boundary of the constraint set Aε that prevents the minimizing procedure from leaving the set Aε. We then solve
a sequence of minimization problems of the form

min
v∈Aε

Eδ[v] (8)

for increasingly higher values of δ.
Let uδ denote a minimizer of Eq. (8). We expect that, in the limit as δ → ∞, the sequence {uδ} yields a

limit function that is a solution of the original constrained minimization problem defined by Eq. (1) together with
Eq. (2). In this work, we consider the same barrier functional proposed by Aguiar [4] and used by Fosdick et al.
[5], which is given by

P[u] ≡
∫
B

1

det (1 +∇u)− ε
dX, ∀u ∈ Aε. (9)

We expect that the Lagrange multiplier λ that appears in the Eqs. (4)-(6) is the limit function of the sequence
{λδ}, where, according to Aguiar [4],

λδ =
[
δ (det (1 +∇u)− ε)2

]−1
. (10)

To solve numerically the minimization problem defined by Eq. (8) together with Eq. (7), Eq. (1b), and Eq.
(9), we consider a finite element formulation of this problem. It consists of determining an approximate minimizer
for Eq. (8) that belongs to a finite dimensional subspaceAh ⊂ Aε spanned by a set of vector-valued basis functions
{Φi}, where h stands for the characteristic length of the finite element. We expect that, as h→ 0, this approximate
minimizer tends to uδ . Therefore, in Eq. (8), we consider only displacement fields vh ∈ Aε of the form

vh =

m∑
i=1

siΦi, (11)

where si ∈ R, i = 1, 2, ...,m is a degree of freedom and m is the total number of degrees of freedom associated
with the discretization. Let us introduce the vector s ≡ (s1, s2, ..., sm) and the functions Eh(s) ≡ E [vh] and
Ph(s) ≡ P[vh]. Then, the discrete version of the penalized potential in Eq. (7) is defined by

Fδ(s) ≡ Eh(s) +
1

δ
Ph(s) (12)

and the associated discrete minimization problem is given by

min
s∈Rm

Fδ(s) (13)
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subject to det (1 +∇vh) ≥ ε > 0 in parts of the domain where vh is smooth. This minimization problem is
solved iteratively by the numerical procedure proposed by Aguiar [4], which is based on a standard unconstrained
minimization method with a line search technique.

In summary, starting from an initial guess s0 and a penalty parameter δ, we use the numerical procedure of
Aguiar [4] to generate a sequence of approximations {sk}, k = 1, 2, 3, ..., which converges to the solution of the
discrete minimization problem in Eq. (13). Next, we increase δ and minimize again the corresponding functional
Fδ . However, this time we take s0 to be the solution obtained from the previous δ. As δ → ∞, the solution
obtained for the discrete minimization problem, given by Eq. (13), tends to an approximate solution uh ∈ Vh of
the original minimization problem, given by Eq. (1). By letting h→ 0, we generate a sequence of approximations
{uh} that converges to the minimizer of the original problem in Eq. (1).

3 Problem formulation

We consider the problem of an anisotropic disk of radius Re in equilibrium in the absence of body force.
The external boundary ∂B is subjected to a prescribed displacement ū = ūr er + ūθ eθ, where {er, eθ} is an
orthonormal basis associated to the polar coordinate system (R,Θ). In addition, the displacement field is null at
the center of the disk.

Relative to the basis {er, eθ} at a material point X = R er ∈ B, the stress and the strain tensors of classical
linear elasticity are given by, respectively,

T = σrr er ⊗ er + σθθ eθ ⊗ eθ + σrθ (er ⊗ eθ + eθ ⊗ er) , (14)

E = εrr er ⊗ er + εθθ eθ ⊗ eθ + εrθ (er ⊗ eθ + eθ ⊗ er) (15)

and are related to each other through the Generalized Hooke’s Law, T = C[E], which, here, yields the nonzero
components

σrr = c11εrr + c12εθθ, σθθ = c12εrr + c22εθθ, σrθ = 2c66εrθ, (16)

with c11, c22, c12 and c66 being the elastic moduli.
We assume that the displacement field is rotationally symmetric with respect to the center of the disk, yielding

u(R,Θ) = ur(R) er + uθ(R) eθ. (17)

Therefore, the strain components are given by

εrr = u′r, εθθ =
ur
R
, εrθ =

1

2

(
u′θ −

uθ
R

)
, (18)

and the determinant of the deformation gradient by

det(1 +∇u) = (1 + u′r)(1 + ur/R) + u′θ uθ/R, (19)

where (·)′ ≡ d(·)/dR.
It follows from Eqs. (14)-(18) that the total potential energy functional E , given by Eq. (1b), and the barrier

functional P , given by Eq. (9), can be written as, respectively,

E [u] = π

∫ Re

0

[
c11R (u′r)

2
+ 2c12 ur u

′
r + c22

u2
r

R
+ c66R (u′θ)

2 − 2c66 uθ u
′
θ + c66

u2
θ

R

]
dR , (20)

P[u] = 2π

∫ Re

0

R

(1 + u′r) (1 + ur/R) + u′θ uθ/R− ε
dR. (21)

4 Numerical results

We apply the numerical procedure described in Section 2 to solve numerically the disk problem formulated in
Section 3. We have chosen the same material and geometric parameters that Fosdick et al. [5] used in their investi-
gation on the existence of a secondary solution of the disk problem. In dimensionless units, ūr ≡ ū · er = −0.05,
ūθ ≡ ū · eθ = 0, c11 = 105, c22 = 104, c12 = 103, c66 = 103, ε = 0.1 and Re = 1.

We have considered a sequence of uniform meshes with N linear finite elements, where N ∈ {256, 1024,
4096, 16384, 65536}, and the sequence of penalty parameters δ ∈ {10−3, 10−2, 10−1, 100, ..., 108}. Our numeri-
cal experiments have confirmed that the numerical results do not change significantly for δ > 108.
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



A. Aguiar, L. Rocha

The choice of the initial candidate for a minimizer is crucial for obtaining a secondary solution, which, in this
work, is rotationally symmetric with respect to the center of the disk. First, we consider that this candidate is the
solution of the unconstrained problem of an isotropic disk, i.e., u = (R/Re) ūr er. This solution yields the initial
guess s0 through Eq. (11), where, here, m = 2M , with M being the number of mesh nodes. In this respect, the
components of s0 are s2 i−1

0 ≡ u(Ri) · er = −0.05Ri and s2 i
0 ≡ u(Ri) · eθ = 0, where i = 1, 2, 3, ...,M , and Ri

denotes the position of the i-th node. Using this initial guess, which was also used by Fosdick et al. [5], we obtain
a convergent sequence of numerical solutions that tends to the radially symmetric solution determined analytically
by Fosdick and Royer-Carfagni [2].

To obtain a secondary solution, we introduce a perturbation u0
θ in the tangential displacement. Specifically,

except for the prescribed value on the boundary, given by ūθ, all the components of the initial guess s0 associated
to the tangential displacement are set equal to u0

θ. We then have that s2 i
0 = u0

θ, i = 2, . . . ,M − 1 with R1 = 0
and RM = Re. Here, we use u0

θ = 10−5, because it is the minimum perturbation necessary to obtain a secondary
solution for the mesh with 256 elements. Smaller values of u0

θ could be used for the more refined meshes.
By approximating the circular boundary of the domain with quadratic polynomials from a Q2 isoparametric

finite element discretization, Fosdick et al. [5] have also introduced a perturbation, which is small. As a result,
their secondary solution could only be obtained with a very fine mesh. In our case, we control explicitly the size
of the perturbation u0

θ, allowing to obtain the secondary solution with a coarse mesh.
The interior penalty method requires that the initial guess must satisfy the local injectivity constraint. It is not

clear a priori that the perturbed initial guess we use is locally injective. In fact, large values of u0
θ can make the

initial guess to violate the constraint; especially in the case of fine meshes. Therefore, we check for this violation
at all quadrature points before we start the search procedure.

In Fig. 1 we show solid lines representing the radial displacement ur of the rotationally symmetric solution
obtained from each one of the five meshes for a fixed large penalty parameter δ. We also show a dashed line
representing ur of the radially symmetric solution from the constrained theory of Fosdick and Royer-Carfagni [2].
Figure 1a refers to the whole domain (0, Re) and Fig. 1b refers to a vicinity of the origin. We see from these
figures that the rotationally symmetric solutions yield a sequence of radial displacements that converge to a limit
function, which is, in modulus, greater than the modulus of its radially symmetric counterpart. Even though it is
not shown in Fig. 1, this limit function is very close to ur of the radially symmetric solution from the unconstrained
classical linear theory. These observations represent a major difference between our results and the ones reported
in Fosdick et al. [5]. Without presenting convergence analysis, these authors show results indicating that their ur
from the numerical solution is close to ur of the radially symmetric solution from the constrained theory.

(a) Whole domain (b) Neighborhood of the origin

Rotationally symmetric solution Radially symmetric solution

Figure 1. Radial displacement ur obtained analytically (dashed line) and numerically (solid lines) using
256, 1024, 4096, 16384, 65536 elements and δ = 108.

In Fig. 2 we show curves for the tangential displacement uθ obtained from the five uniform meshes and a
fixed large penalty parameter δ. Recall from the exposition above that uθ = 0 in the case of the radially symmetric
solution of Fosdick and Royer-Carfagni [2]. The results are presented in two scales, so that Fig. 2a refers to
the entire interval (0, Re) and Fig. 2b refers to a vicinity of the origin. We see from Fig. 2b that the numerical
approximations of uθ converge to a limit function as the number of elements N increases. This limit function is
linear near the center of the disk, increases nonlinearly as R increases, reaches a maximum value at approximately
R = 0.0152, and then decreases monotonically for larger values of R. In the region where the limit function is
linear we have used 144 elements for the most refined mesh of 65536 elements.

The above results are qualitatively similar to the corresponding results presented by Fosdick et al. [5] in their
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(a) Whole domain (b) Neighborhood of the origin

Figure 2. Tangential displacement uθ for the rotationally symmetric solution obtained numerically using
256, 1024, 4096, 16384, 65536 elements and δ = 108.

Fig. 9. In spite of the good qualitative agreement, the maximum value of uθ is approximately 0.0065 in Fig. 2 and
0.0036 in their Fig. 9. Also, it is not clear from their figure that uθ behaves linearly in a vicinity of the center of
the disk. In fact, in their figure, uθ seems to be negative very close to this center.

In Fig. 3 we show the determinant of the deformation gradient J ≡ det(1 + ∇u) calculated from the
rotationally symmetric solution obtained with the most refined mesh for a fixed large penalty parameter δ. We
also show J calculated from the radially symmetric solution of Fosdick and Royer-Carfagni [2]. Again, Figure
3a refers to the whole domain (0, Re) and Fig. 3b refers to a vicinity of the origin. We see from Fig. 3a that
both curves become indistinguishable as we move away from the origin and from Fig. 3b that, as we approach
the center of the disk, J decreases, is equal to 0.1 in the interval (0.0022, 0.0190), and has very high values for
R < 0.0022, which indicates that it is singular at R = 0. The interval (0.0022, 0.0190) corresponds to the active
region B= introduced in Eq. (3) and is different from the active region of the radially symmetric solution, given by
(0, 0.0075). In addition, R = 0.0022 coincides with the radius below which uθ is linear in Figure 2.

(a) Whole domain (b) Neighborhood of the origin

Rotationally symmetric solution Radially symmetric solution

Figure 3. Determinant of the deformation gradient, J , obtained analytically (dashed line) and numerically (solid
line) with 65536 elements and δ = 108.

In Fig. 4 we show λδ , evaluated from Eq. (10), versus R ∈ (0, 0.05) for a large penalty parameter δ and
different values of N . We see that λδ takes large, but finite values and it vanishes outside the active region, as
expected. The above results are in good qualitative agreement with results shown in Fig. 18 of Fosdick et al. [5].
Quantitatively, both results are of the same order of magnitude, with the maximum value of λδ in Fig. 4 being close
to 10600 for the most refined mesh and close to 9000 in Fig. 18 of Fosdick et al. [5]. A possible explanation for
this difference may be inferred from Fig. 4 itself, where we see that the maximum values of λδ vary considerably
with N .

We have also used the mesh with 65536 elements to calculate the total potential energy functional E , given by
Eq. (20), for both the radially symmetric solution and the rotationally symmetric solution, yielding the approximate
values of 264.5 and 256.6, respectively. Thus, the total potential energy of the rotationally symmetric solution is
lower than the corresponding energy of the radially symmetric solution.
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Figure 4. Approximation λδ of the Lagrange multiplier for the rotationally symmetric solution using
256, 1024, ..., 65536 elements and δ = 108.

5 Conclusions

In this work we have investigated the problem of a cylindrically anisotropic disk in equilibrium with no body
force, which is subjected to a prescribed displacement along its external boundary. We have searched for either
radially or rotationally symmetric solutions of the associated minimization problem subjected to the injectivity
constraint det∇f ≥ ε > 0. For this, we have used the penalty formulation proposed by Aguiar [4] together with
a finite element procedure defined over a one-dimensional domain, instead of the two-dimensional domain of Fos-
dick et al. [5]. Our discretization strategy uses linear finite elements and yields a convergent sequence of solutions
at a very low computational cost. The sequence converges to a limit function that is close to the radially symmetric
solution of the classical linear theory. This result is different from a result reported by Fosdick et al. [5], accord-
ing to which their numerical solution is close to the radially symmetric solution of the constrained minimization
problem. In addition, it is clear from our investigation that a small perturbation must be introduced to obtain the
rotationally symmetric solution, for otherwise the solution obtained is radially symmetric. The corresponding total
potential energy of the rotationally symmetric solution is lower than that of the radially symmetric solution.
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