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Abstract. The current work develops a new simple Kirchhoff-Love shell finite element model for reliable and 

efficient simulation of thin nonlinear structures. This new shell triangular element has 6 nodes and uses penalty 

methods to approximate displacement C¹ continuity. The DOF’s are the displacements u at the six nodes and an 

incremental scalar rotation parameter φΔ at mid-side nodes. The incremental rotation vector αΔ (incremental 

Rodrigues parameters) and incremental rotation tensor Q at the mid-side nodes are computed at element level by 

solving simple equations. The displacements “u” are interpolated by quadratic polynomials from the nodal values 

as usual. Simulations are done comparing its results to other numerical models in order to verify model reliability. 
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1  Introduction 

The model developed in this work aims to be a good alternative for simulation of nonlinear thin shells with 

finite element method. Shell mechanics is an import topic of study once it is very applicable in engineering. 

Important work has been done in this field (shell + computational mechanics) by Simo JC [1] and Pimenta [2] 

before 2000’s and later by Campello et al. [3], Viebahn et al. [4] and Costa e Silva [5]. It is shown in the 

bibliography that if not simulated properly, thin structures may present locking phenomena (structure seems stiffer 

than what it really is) may occur. This is the main motivation for many researches in shell computational 

mechanics. Given that, the present work continues the models developed by Viebahn et al. [4] and Costa e Silva 

[5]. Further information may be checked in a forthcoming article Sanchez et al. [6]. 

2  Model Description 

Shell Kinematics 

The model presented in this paper is based on Kirchhoff-Love shell kinematics, also known as Classical 

Shell/Plate theory (Reddy [7]). The main kinematic restrictions which the shells are subject in this theory are: 

1. Straight perpendicular lines to the middle surface stay straight after any deformation. 

2. The same straight perpendicular lines don’t change its length, i.e., they are inextensible. 

3. The same straight perpendicular lines remain perpendicular to the middle surface during any deformation 

imposed to the shell. 

Figure 1 illustrates the kinematical model used. A plane initial configuration is assumed, even though curved 

shells may be represented as an initial stress-free deformation (Pimenta et al. [8]). 
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Figure 1. Shell kinematical model. 

The kinematical model is based on the article Pimenta et al [9] and the FEM model is better explained in 

Sanchez et al. [6]. The position of an arbitrary point in the shell is defined by vector 𝒙 ∈ ℝ3 in the current 

configuration. Its counterpart in the reference configuration is 𝝃 ∈ ℝ3. These position vectors may be divided in 

two components: by its projection to shell middle surface (𝒛 ∈ Ω ⊂ ℝ3 and 𝜻 ∈ Ω𝑟 ⊂ ℝ2 in the current and 

reference configurations respectively) and a perpendicular vector to this surface (𝒂 and 𝒂𝒓). The following 

equations resumes the shell kinematics 

𝝃 = 𝜻 + 𝒂𝒓 , 𝜻 = 𝜉𝛼𝒆𝜶
𝒓 ,   𝜉𝛼 ∈ Ωr , 𝒂𝒓 = 𝜉3𝒆𝟑

𝒓 ,   𝜉3 ∈ 𝐻𝑟  , (1) 

 

𝒛 = 𝜻 + 𝒖 , 𝒂 = 𝑸𝒂𝒓 and 𝒙 = 𝒛 + 𝒂 . (2) 

The rotation tensor 𝑸 and the derivatives of 𝒛 are defined as 

𝑸 = 𝒆𝒊 ⨂ 𝒆𝒊
𝒓 , 𝒛,𝛼 =

𝜕(𝜉𝛼𝒆𝜶
𝒓 + 𝒖)

𝜕𝜉𝛼

= 𝒆𝜶
𝒓 + 𝒖,𝛼 and 𝒛,𝛼𝛽 = 𝒖,𝛼𝛽 where (∙)α =

𝜕(∙)

𝜕𝜉𝛼

 . (3) 

The deformation gradient 𝑭 is defined by  

𝑭 = 𝜕𝒙/𝜕𝜉 =
𝜕(𝒛 + 𝑸𝒂𝒓)

𝜕𝜉𝛼

⨂𝒆𝜶
𝒓 +

𝜕(𝒛 + 𝑸𝒂𝒓)

𝜕𝜉3

⨂𝒆𝟑
𝒓 = 𝒇𝜶⨂𝒆𝜶

𝒓 + 𝒇𝟑⨂𝒆𝟑
𝒓  , (4) 

and the curvature vectors are defined as 

𝑲𝜶 = 𝑸,𝜶𝑸𝑻 and 𝜿𝜶 = 𝑎𝑥𝑖𝑎𝑙(𝑲𝜶) . (5) 

With previous equation, components of deformation gradient may be rewritten and the jacobian defined as 

𝒇𝜶 = 𝒛,𝜶 + 𝜿𝜶 × 𝒂 and 𝐽 = 𝑑𝑒𝑡 𝑭 = 𝒇1 ⋅ (𝒇2 × 𝒇3). (6) 

Back-rotated counterparts of deformation gradient and strains are specified as 
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𝑭𝑟 = 𝑸𝑻𝑭 = 𝑰 + 𝜸𝛼
𝑟 ⨂𝒆𝛼

𝑟 + 𝜸33
𝑟 ⨂𝒆3

𝑟  , 𝜸𝛼
𝑟 = 𝜼𝛼

𝑟 + 𝒌𝛼
𝑟 × 𝒂𝑟 and 

𝜼𝛼
𝑟 = 𝑸𝑇𝒛,𝛼 − 𝒆𝛼

𝑟  

𝜿𝛼
𝑟 = 𝑎𝑥𝑖𝑎𝑙(𝑸𝑇𝑸,𝛼) . 

(7) 

The plane stress condition is enforced imposing in the equating (𝛕𝒆3) ⋅ 𝒆3 = 0 and the Piola-Kirchhoff stress 

tensor is defined as 

𝑷 =
𝜕𝜓

𝜕𝑭
=: 𝜕𝐹𝜓 = 𝝉𝑖⨂𝒆𝑖

𝑟 , where   𝝉 =
𝜕𝜓

𝜕𝒇𝑖
 . (8) 

 

Weak form of equilibrium and Constitutive equations 

The weak form of equilibrium equation is implemented in the current model by equations 

𝛿𝑊 = 𝛿𝑊𝑖𝑛𝑡 − 𝛿𝑊𝑒𝑥𝑡 = 0 , ∀𝛿𝒖 and 

𝛿𝑊𝑖𝑛𝑡 = ∫ 𝑷: 𝛿𝑭𝑑𝑉
𝛣

 =  ∫ (𝝈𝜶
𝒓 ⋅ 𝛿𝜺𝜶

𝒓 )𝑑Ω𝑟

Ω𝑟
 

𝛿𝑊𝑒𝑥𝑡 = ∫ 𝒕̅ ⋅ 𝛿𝒙𝑑𝐴
𝜕Β

+ ∫ 𝒇̅ ⋅ 𝛿𝒙𝑑𝑉
𝛣

 , 
(9) 

where δw𝑒𝑥𝑡 and δw𝑖𝑛𝑡 are virtual work of external and internal forces, 𝒕 and 𝒇 are the boundary forces. In previous 

equation we still have 

 𝝈𝜶
𝒓 = [𝒏𝛼

𝑟 𝒎𝛼
𝑟 ]𝑇 , 𝜺𝜶

𝒓 = [𝜼𝛼
𝑟 𝜿𝛼

𝑟 ]𝑇 , 𝒏𝛼
𝑟 = ∫ 𝝉𝛼

𝑟 𝑑𝐻
𝐻

 and 𝒎𝛼
𝑟 = ∫ (𝒂𝑟 × 𝝉𝛼

𝑟 )𝑑𝐻
𝐻

 , (10) 

considering 𝒏𝛼
𝑟  and 𝒎𝛼

𝑟  as Back-rotated Forces and moments per unit length, 𝜿𝛼
𝑟  and 𝜼𝛼

𝑟   as Back-rotated curvature 

vector and membrane strains.  

The current model uses an elastic material with strain energy defined by 

𝜓 =
1

2
𝜆 (

1

2
(J2 − 1) − 𝑙𝑛(J)) +

1

2
𝜇(𝐼1 − 3 − 2𝑙𝑛(J)) . (11) 

In the equation above, λ and μ are Lamé coefficients, 𝜓(𝑭) is Helmholtz free energy and 𝑪 = 𝑭𝑇𝑭 is 

deformation Cauchy-Green (right) tensor. 𝐼𝑖  are the invariants of the Cauchy-Green tensor “C”. 

 

Finite element definition and Kinkling angle 

The finite element has 6 nodes, a quadratic displacement field (Nodal Values  𝑢(1). . 𝑢(6)) and 3 independent 

scalar rotation parameters (𝜑Δ
(4)

, 𝜑Δ
(5)

, 𝜑Δ
(6)

). Figure 2 illustrates the FE Model. 

       

Figure 2. Finite element model.  /      Figure 3. Kinkling angle - Adjacent elements. 

The kinkling angle definition is an import part in this Finite Element model. As the kinematics of the shell is 

based on Kirchhoff-Love theory, the displacement gradient must be continuous in whole domain and consequently 

the kingling angle between adjacent elements must remain continuous through the deformation. Geometrically the 

kinkling angle is interpreted as the angle between mid-surface normal of adjacent elements (see Figure 3). 

Considering that, the current model imposes a penalty to certain kinematical variables in order to have this 

𝐶1 continuity approximated when element size gets refined asymptotically (ℎ → 0)(Viebahn et al. [4]). As 

expressed in equation (2), 𝑸 is the tensor that rotates normal from reference to current configuration. In the 
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development it is used also Rodrigues rotation parameters, in which 𝑸 may be written as a function of 𝛂: 

α = 2tan(θ/2) ,  𝛂 =  α𝐞 , 𝐀 = skew(𝛂) , 

(12) 

𝐐̂(𝛂) = (𝐈 −
1

2
 𝐀)

−1

(𝐈 +
1

2
 𝐀) = 𝐈 +

4

4 +  α2
(𝐀 +

1

2
𝐀𝟐) . 

Rotation increments are easily approached when using Rodrigues parameter considering the equations 

𝑸𝑖+1 = 𝑸∆𝑸𝑖    , 𝑸𝑖+1 = 𝑸̂(𝛂𝐢+𝟏) , 𝑸∆ = 𝑸̂(𝛂∆)  , 𝑸𝑖 = 𝑸̂(𝛂𝐢)    and 

(13) 

𝛂𝐢+𝟏 =
𝟒

𝟒 − 𝛂𝐢 ⋅ 𝛂∆

 (𝛂𝐢 + 𝛂∆  −  
𝟏

𝟐
𝛂𝐢 × 𝛂∆) . 

Yet considering kinematical relations (2)(3) and sub-sequential time steps ({𝒆1
𝑖 , 𝒆2

𝑖 , 𝒆3
𝑖 } at 𝑡𝑖 and 

{𝒆1
𝑖+1, 𝒆2

𝑖+1, 𝒆3
𝑖+1} at 𝑡𝑖+1), one have applying (13) 

𝒆3
𝑖+1 = 𝑸∆𝒆3

𝑖  , 𝒆3
𝑖+1 − 𝒆3

𝑖 = 𝛂∆ × 𝒆3
𝑚   and 𝒆3

𝑚 =
1

2
(𝒆3

𝑖+1 + 𝒆3
𝑖 ) . (14) 

In [1], a scalar Rodrigues parameter 𝜑Δ is presented and one have 

𝛂∆ = ‖𝒆3
𝑚‖−𝟐(𝒆3

𝑖 × 𝒆3
𝑖+1) + 𝜑Δ‖𝒆3

𝑚‖−𝟏𝒆3
𝑚    and 𝜑Δ = ‖𝒆3

𝑚‖−𝟏𝛂∆ ⋅ 𝒆3
𝑚 . (15) 

With the equations presented so far, it may be observed that the normal vector 𝒆𝟑 for any time step may be 

determined by the displacement field and consequently by displacement degrees of freedom of the element: 

𝒆𝟏 = ‖𝒛,1‖
−1

𝒛,1  , 𝒆3 = ‖𝒛,1 × 𝒛,2‖
−1

(𝒛,1 × 𝒛,2)  , 𝒆𝟐 = 𝒆𝟑 × 𝒆𝟏  , (16) 

𝒖,𝟏
(𝟒)

=
1

𝑙3

(𝒖(2) − 𝒖(1))  , 𝒖,𝟏
(𝟓)

=
1

𝑙1

(𝒖(3) − 𝒖(2))  , 𝒖,𝟏
(𝟔)

=
1

𝑙2

(𝒖(1) − 𝒖(3))  , (17) 

 

𝒖,𝟐
(𝟒)

= (
𝐶1

2𝐴
) 𝒖(1) + (

𝐶2

2𝐴
) 𝒖(2) + (

𝐶3

2𝐴
) 𝒖(3) + (

−𝐶3

𝐴
) 𝒖(4) + (

𝐶3

𝐴
) 𝒖(5) + (

𝐶3

𝐴
) 𝒖(6)  , 

𝑤ℎ𝑒𝑟𝑒 𝐶1 = 𝑥3 − 𝑥2 , 𝐶2 = 𝑥1 − 𝑥3 , 𝐶3 = 𝑥2 − 𝑥1  . 
(18) 

Knowing the local base system at the time step t and t+1, one can define the Rodrigues incremental vector 

𝜶𝜟 and consequently 𝜙Δ by 

𝜶𝜟 =
2(𝒆𝒋

𝒊 × 𝒆𝒋
𝒊+𝟏)

1 + 𝒆𝒌
𝒊 ⋅ 𝒆𝒌

𝒊+𝟏
   , 𝜙Δ = 𝜶𝚫 ⋅

𝒆𝟏
𝒎

‖𝒆𝟏
𝒎‖

   𝑎𝑛𝑑 𝒆𝟏
𝒎 =

1

2
(𝒆𝟏

𝒊 + 𝒆𝟏
𝒊+𝟏)  . (19) 

 

With the equations stated above, it is used a penalty parameter to enforce the approximation between 𝜙Δ and 

𝜑Δ. 

𝛱𝑝𝑒𝑛 = 𝜓 +
1

2
𝑘(𝜑𝛥

(4)
− 𝜙𝛥

(4)
)

2
+

1

2
𝑘(𝜑𝛥

(5)
− 𝜙𝛥

(5)
)

2
+

1

2
𝑘(𝜑𝛥

(6)
− 𝜙𝛥

(6)
)

2
  . (20) 

Here in this text, it is used similar letter in order to illustrate that 𝜙Δ and 𝜑Δ are concepted to be the same 

identity but as they are obtained from different variables, thay will in most of the cases have different values. 

Herein they are forced to approximate numerically by applying the penalty strategy. In other worlds, penalty is 

used to enforce compatibility of the displacement field and the rotation degree of freedom 𝜑Δ which is shared 

between adjacent elements. With this penalty imposed, it is expected to approximate the 𝐶1 continuity condition 

at element borders with sufficient mesh refinement. The only artificial parameter in the element model is therefore 

𝑘, which by means of simulation has been defined as a multiple of the bending stiffness of a shell 

(𝐸ℎ3/(12(1 − ν2))). 
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3  RESULTS 

The element model developed in this article has been implemented in a numerical environment and have 

been simulated for different conditions in order to compare its results to other finite element models available. The 

two simulation scenarios that are presented in this article are “Cantiliever Beam” and “Pinched cylinder”. The 

simulations have been executed numerically in three (3) different numerical enviroments. First, with the model 

developed in this article (KL T63i Pen). Second using the model developed in Costa e Silva [5] (KL T63i Lag). 

Third, using commercial software (Autodesk Nastran – Ctria6 element. See Autodesk [10]). 

Cantilever Beam 

In this classical structural problem, a beam (in this case a narrow shell) is clamped at one side and is free but 

subject to a bending force in the other side (see Figure 4). The following list represents the simulation parameters: 

• E = 210 ⋅ 109 𝑃𝑎; 

• 𝜈 = 0,3125; 

• 𝐿 (𝑏𝑒𝑎𝑚 𝑙𝑒𝑛𝑔𝑡ℎ)  = 2400 𝑚𝑚;  

• ℎ(𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ℎ𝑒𝑖𝑔ℎ𝑡)  =  100 𝑚𝑚; 

• 𝑏(𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑑𝑡ℎ)  =  11,64 𝑚𝑚; 

  

Figure 4 - Cantilever Beam 

 

Figure 5 – Vertical and lateral maximum displacement vs load factor.  

Figure 5 plots the vertical and lateral displacement of the free side of the beam. It can be seen that for load 

factor bigger than 0,25 the beams buckles. In this scenario, Lagrange and penalty based models behave practically 

the same results (displacements). Also, for load factor bigger than 0,25, the Nastran model could not converge, 

which demonstrate its limitation for thin shells high nonlinear simulations. 

Pinched Cylinder 

This simulation scenario has been based on the articles (Ivannikov et al. [11], Campello et al. [3], Sansour 

and Kollmann [12] and Costa e Silva[5]). Here, a thin cylinder is subject to a radial vertical force in its center (see 

Figure 6). The parameters of the simulation are the same that in bibliography: 

• E = 3 ⋅ 1010 𝑃𝑎; • 𝐿 (𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑙𝑒𝑛𝑔𝑡ℎ)  = 200 𝑚𝑚;  
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• 𝜈 = 0,3 

• 𝐹 (𝑓𝑜𝑟𝑐𝑒)  =  1000 𝑁 

• 𝑅(𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 𝑅𝑎𝑑𝑖𝑢𝑠)  =  100 𝑚𝑚; 

• 𝑏(𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)  = 1 𝑚𝑚; 

  

Figure 6 – Pinched cylinder  

 

 

Figure 7 - Maximum vertical displacement at A; Maximum Horizontal displacement at B 

It can be seen on Figure 7 that Nastran have generated different results, less smooth and stiffer compared to the 

KL T63I (Penalty and Lagrange), showing its limitation in this type of simulation. In contrast, KL models have 

presented compatible, smooth and coherent results. 

4  Conclusions 

The text herein presented demonstrates the most important aspects of the kinematical model and the two 

simulated scenarios demonstrates coherent and satisfactory results. Further tests and benchmarks are going to be 

presented in further work. It is believed that powerful triangular mesh generators combined with the model 

developed in this article might be a good alternative for simulating thin nonlinear shell in finite element methods. 

Acknowledgements. Matheus L. Sanchez thankfully acknowledges Clark Solutions, where he works as a project 

engineer providing financial support, knowledge, applicability and industrially experience. C. Costa e Silva 

gratefully acknowledges the Federal Institute of Science and Technology Education of São Paulo for financial 

support.  P. M. Pimenta acknowledges the support by CNPq under the grant 308142/2018-7 and the Alexander 

von Humboldt Foundation for the Georg Forster Award that made possible his stays at the Universities of 

Duisburg-Essen and Hannover in Germany as well as the French and Brazilian Governments for the Chair CAPES-

Sorbonne that made possible his stay at Sorbonne Universités on a leave from the University of São Paulo. 



Matheus L. Sanchez, Catia C. Silva, Paulo M. Pimenta 

CILAMCE 2020 

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC 

Foz do Iguaçu/PR, Brazil, November 16-19, 2020 

 

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the 

authorship of this work, and that all material that has been herein included as part of the present paper is either the 

property (and authorship) of the authors, or has the permission of the owners to be included here.  

References 

[1] Simo J.C., Fox, D.D., “On a stress resultant geometrically exact”. Comput Methods Appl Mech., 1989. 

[2] Pimenta, P.M., “On the geometrically-exact finite-strain shell”. Proceeding of the third Pan-American congress on., 1993. 

[3] Campello, E.M.B.; Pimenta, P.M.; Wriggers, P. “A triangular finite shell element based on a fully nonlinear shell 

formulation”. Computational Mechanics. Comput. Methods Appl. Mech. Engr, 2003. 

[4] Viebahn, N.; Pimenta, P.M.; Schröder, J.A., “A simple triangular finite element for nonlinear thin shells: statics, 

dynamics and anisotropy”. Computational Mechanics, 2017. 

[5] Costa e Silva, C., “Geometrically exact shear-rigid shell and rod models”. Ph.D. Thesis, University of Sao Paulo, Brazil, 

2020. 

[6] Sanchez, M.L.; Costa e Silva, C; Pimenta, P.M., “A simple fully nonlinear Kirchhoff-Love shell finite element”. LAJSS, 

to be published 

[7] Reddy, J. N., “Theory and analysis of elastic plates and shells”. CRC press, 2006. 

[8] Pimenta, P.M, Campello, E.M.B.,“Shell curvatures as an initial deformation: a geometrically exact finite element 

approach”. Int J Numer Methods Eng 78:1094–1112, 2009 

[9] Pimenta, P.M., Neto, E.S.A, Campello E.M.B., “Fully Nonlinear Thin Shell Model of Kirchhoff-Love type”, 2010. 

[10] Autodesk, Inc CTRIA6 Autodesk Nastran. “https://knowledge.autodesk.com/support/nastran/learn-

explore/caas/CloudHelp/cloudhelp/2020/ENU/NSTRN-Reference/files/GUID-956704D9-26C5-4FF8-85F2-

955F383C5ECD-htm.html”, 2019. 

[11] Ivannikov, V., Tiago, C., Pimenta P.M., “Generalization of the C1 TUBA plate finite elements to the geometrically 

exact Kirchhoff–Love shell model”. Comput Methods Appl Mech Eng, 2015 

[12] Sansour, C., Kollmann, F., “Families of 4-node and 9-node finite elements for a finite deformation shell theory. An 

assessment of hybrid stress, hybrid strain and enhanced strain elements”. Comput Mech 24:435–447, 2000 

 


